Speciality: Biomedical engineering-S3-

Module: Fundamental Electronic 1

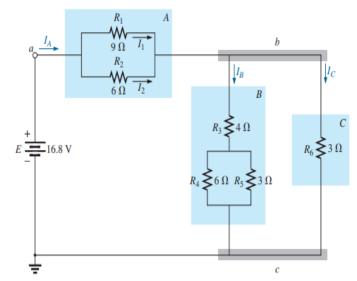
Dr Samia BELKACEM

2023/2024

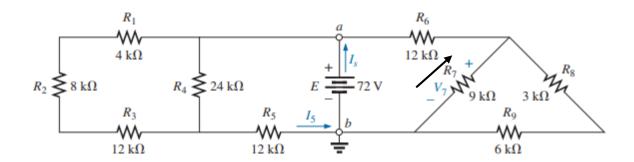
TD 1

Exercise 1

For the following network, determine currents I4, Is and voltage V2.


Given:R1=6.8K Ω ;R2=18K Ω ;R3=2K Ω ;R4=8.2K Ω ; E=12V.

Exercise 2

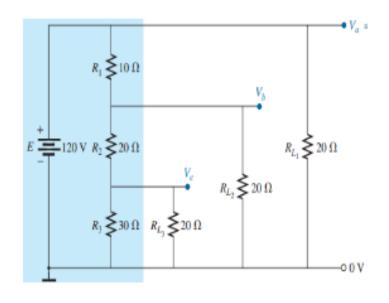

Determine all the currents: Ia, I1, I2, I3, Ib and Ic and voltages: Vab and Vbc.

Given:R1=9 Ω ;R2=6 Ω ;R3=4 Ω ;R4=6 Ω ; R5=3 Ω ;R6=3 Ω ; E=16.8V.

Exercise 3

Consider the circuit given below, calculate the indicated currents: I5, Is and voltage V7.

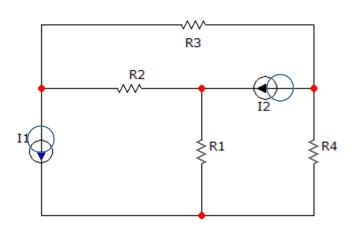
Given: $R1=4K\Omega$; $R2=8K\Omega$; $R3=12K\Omega$; $R4=24K\Omega$; $R5=12K\Omega$; $R6=12K\Omega$; $R7=9K\Omega$; E=72V.


2023/2024

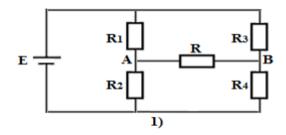
Exercise 5

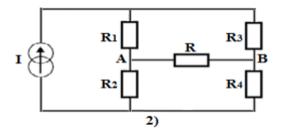
Using voltage divider find the voltages: Va? Vb? Vc?.

Given:


 $R1=10\Omega; R2=20\Omega; R3=30\Omega; RL1=20\Omega;$ $RL2=20\Omega; RL3=20\Omega; E=120V.$

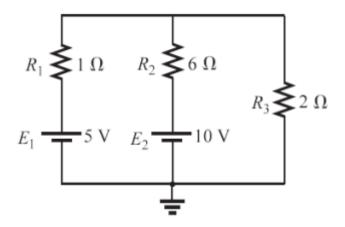
Exercise 6


In the following network configuration. Find the current and voltage drops through resistor R2 by using superposition theorem.


Given: R1=1 Ω , R2=5 Ω , R3=4 Ω , R4=2 Ω , I1=1A and I2=2A

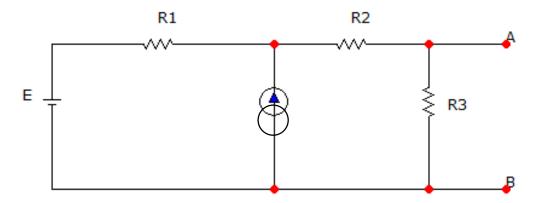
Exercise 7

For the following two circuits, give the equivalent Thevenin diagram between points A and B.



2 2023/2024

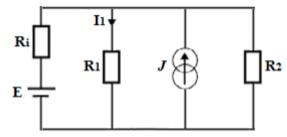
Exercise 9


Consider the figure bellow, use Millman's theorem to find the current through the R3 resistor.

Given: R1=1 Ω , R2=6 Ω , R3=2 Ω , E1=5V and E2=10V.

Exercise 10

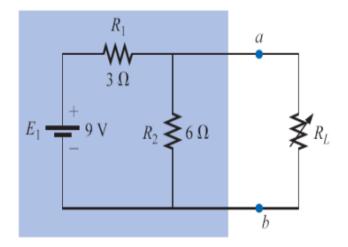
Find Norton equivalent circuit at terminals a-b.


Given: R1=3 Ω , R2=3 Ω , R3=6 Ω , E=15V and I=4A

3 2023/2024

Homework

Exercise 1


Using the superposition theorem, give the expression of the current *I*1 in the term of Ri, R1, R2, E and J.

Exercise 2

For the following circuit:

- 1) Find the Thevenin equivalent circuit for the network in the shaded area of the network.
- 2) Find the current through RL for values of 2 Ω , 10 Ω , and 100 Ω .

4 2023/2024