Série de TD N°01

Exercice 1

Pour un mélange binaire de A et B, montrer que la fraction massique ω_A est reliée à la fraction molaire x_A par :

a)
$$w_A = \frac{X_A M_A}{X_A M_A + X_B M_B}$$

b)
$$dW_A = \frac{M_A M_B dx_A}{(X_A M_A + X_B M_B)^2}$$

c)
$$dx_A = \frac{dW_A}{M_A M_B (W_A/_{M_A} + W_B/_{M_B})^2}$$

Exercice 2

La composition de l'air est souvent donnée en termes des deux principaux constituants seulement; dans le mélange gazeux, on a :

Oxygène
$$O_2 \longrightarrow y_{O2} = 0.21$$

Azote
$$N_2 \longrightarrow y_{N2} = 0.79$$

Déterminer la fraction massique de chacun des constituants et la masse molaire moyenne de l'air sachant que les masses molaires de l'oxygène et de l'azote sont, respectivement, 32 g/mol et 28 g/mol.

Exercice 3

La composition molaire du gaz naturel liquéfié commercial est :

- méthane, CH4 \longrightarrow 94,9 %
- éthane, C2H6 \longrightarrow 4,0 %
- propane, C3H8 \longrightarrow 0,6 %
- dioxyde de carbone, $CO2 \longrightarrow 0.5 \%$

Déterminer:

- a) La fraction massique du méthane.
- b) La masse molaire moyenne du mélange GNL.
- c) La masse volumique du mélange gazeux lorsqu'il est à 193 K et sous une pression de 1,013.10⁵Pa.
- d) La pression partielle du méthane lorsque la pression totale dans le système est 1,013.10⁵ Pa.
- e) La fraction massique du propane en ppm (parts par million).

Exercice 4

Un réservoir contient 30 m^3 d'air à 400 K et $1,013.10^5 \text{ Pa}$. Sachant que la composition molaire de l'air est de 20 % d'oxygène et 80 % d'azote, déterminer :

- a) La masse totale du mélange
- b) La concentration massique de l'azote
- c) La masse volumique du mélange
- d) La pression partielle de l'oxygène

Exercice 5

Soit un mélange binaire composé de A et B en mouvement tel que :

$$X_a = 1/6$$
; $v^* = 12$ cm/s; $(v_a - v^*) = 3$ cm/s; $M_a = 5M_b$.

Calculer, dans le cas d'une diffusion unidirectionnelle, les quantités : v_b ; $(v_b - v^*)$; v; $(v_a - v)$; $(v_b - v)$

Exercice 6

Considérons le transfert de matière, en régime unidirectionnel, pour un mélange gazeux formé d'oxygène (A) et de gaz carbonique (B) à la température de 294 K et à la pression totale de 1,519.10⁵ Pa.

Sachant que : $X_A = 0.4$; $v_A = 0.08$ m/s ; $v_B = -0.02$ m/s; Calculer :

- a) la masse molaire moyenne du mélange
- b) les concentrations massiques de A et du mélange
- c) la concentration molaire de B
- d) les vitesses de diffusion massique de A et molaire de B

Exercice 7

Un mélange liquide contient 58,8 % en mole de toluène de masse volumique ρA = 870 kg/m3 et 41,2 % en mole de CCl_4 de masse volumique $\rho_B = 1630 \text{ kg/m}^3$. Calculer le rapport massique du toluène ainsi que sa concentration massique en supposant qu'il n'y a pas modification des volumes des constituants lorsqu'on réalise leur mélange.

Exercice 8

On réalise un mélange liquide de benzène (C₆H₆) de volume V (masse volumique 880 kg/m³) et de nitrobenzène (C₆H₅NO₂) de même volume V (masse volumique 1200 kg/m³). En supposant qu'il n'y a pas de modification des volumes des constituants lorsqu'on réalise leur mélange, calculer la concentration molaire du benzène et la masse volumique du mélange.