Chapitre 3 : Variables aléatoires continues, les lois usuelles (la loi exponentielle et la loi normale)

I) Variable aléatoire continue

1) Définitions.

Soit une variable aléatoire réelle (v.a.r) X définie sur (Ω, A, P) et soit F la fonction de répartition de X.

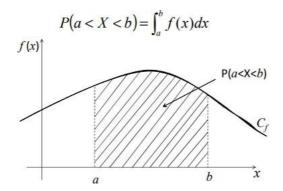
La v.a.r. X est dite absolument continue s il existe une fonction positive f, appelée fonction densité de probabilité telle que : $\forall x \in \mathbb{R}, F(x) = P(X \le x) = \int_{-\pi}^{x} f(t) dt$

- La fonction f est à valeurs positives sur R: $f(x) \ge 0$, $x \in R$.
- · L'intégrale de f sur R converge et est égale à 1.

$$\int_{\mathbb{R}} f(x)dx = \int_{-\infty}^{+\infty} f(x)dx = 1$$

Remarque:

La probabilité de tout intervalle] a,b[est égale à p(a<X<b)= $\int_{a}^{b} f(x) dx$



2) Fonction de répartition d'une v.a.r.:

Soit (Ω, A, P) un espace probabilisé et X une v.a.r. On appelle fonction de répartition de la v.a.r. X, l'application F: $R \longrightarrow [0,1]$ définie par: pour tout $x \in R$:

$$F(x) = P(X \le x) = \int_{-\infty}^{x} f(t)dt$$

Remarque: La fonction de répartition permet de calculer les probabilités concernant les intervalles.

On a $P(a < X \le b) = F(b) - F(a)$

En effet:

$$\begin{split} P(a < X \le b) &= P(a < X \text{ et } X \le b) = P((a < X) \cap (X \le b)) \\ &= P(a < X) + P(X \le b) - P((a < X)U(X \le b)) \\ &= 1 - P(X \le a) + P(X \le b) - P(R) = P(X \le b) - P(X \le a) = F(b) - F(a) \end{split}$$

Proposition: on a

1-
$$P(a \in X \le b) = \int_{a}^{b} f(t) dt = F(b) - F(a).$$

- 2- P(X=a)=0 avec a une constante réelle.
- **3-** $P(a \le X \le b) = P(a \le X \le b) = P(a \le X \le b) = P(a \le X \le b)$
- $4- P(X>a) = \int_{a}^{b} f(t) dt$
- 5- La fonction de répartition est continue sur R.
- **6-** Si la fonction de densité f d'une v.a. continue X est continue au point x alors f est la dérivée de da fonction de répartition F, c'est-à-dire F'(x)=f(x).

Démonstration:

1- Comme ($a < X \le b$) =($X \le b$) - ($X \le a$).

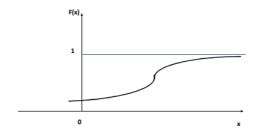
On a
$$P(a \le X \le b)$$
 = $P(X \le b)$ - $P(X \le a)$ = $\int_{-\infty}^{b} f(t)dt - \int_{-\infty}^{a} f(t)dt = \int_{a}^{b} f(t)dt$

2- P(X=a)=lim P(a-1/n < X \le b)=lim
$$\int_{a-1/n}^{b} f(t) dt = 0$$

3-
$$P(a \le X \le b) = P(a < X \le b) + P(X = a) = P(a < X \le b) = P(a < X < b) + P(X = b) = P(a < X < b) = P(a < X < b) + P(X = a) = P(a \le X < b).$$

4-
$$P(X>a)=1-P(X \le a) = \int_{-\infty}^{\infty} f(t)dt - \int_{-\infty}^{a} f(t)dt = \int_{a}^{\infty} f(t)dt$$

Représentation graphique de F(x):



3) Loi d'une variable aléatoire Y= g(X)1- g est bijective

• si g est croissante,

on a
$$Y=g(X) <=> X=g^{-1}(Y)$$
 et $P(Y \le y) = P(g(X) \le y) = P(X \le g^{-1}(y))$. d'où $F_Y(y) = F_X(g^{-1}(y))$

avec F_X et F_Y sont respectivement les fonctions de répartition des v.a. X et Y.

En dérivant, on obtient:

$$f_{Y}(y)=f_{X}(g^{-1}(y))(g^{-1}(y))'$$

Avec f_X et f_Y sont respectivement les densités de probabilité des v.a. X et Y.

• si g est décroissante, on a :

On a
$$Y = g(X) <=> X = g^{-1}(Y)$$
 et $P(Y \le y)$ et $P(Y \le y) = P(g(X) \le y) = P(X > g^{-1}(y))$

 $= 1 - P(X \le g^{-1}(y))$ d'où $F_Y(y) = 1 - F_X(g^{-1}(y))$ En dérivant, on obtient

$$f_Y(y) = -f_X(g^{-1}(y))(g^{-1}(y))$$

2- la formule générale pour g quelconque :

$$f_{Y}(y) = \begin{cases} f_{X}\left(g^{-1}(y)\right) \middle| \left(g^{-1}(y)\right)'\right| & \alpha < y < \beta \\ 0 & \text{autrement} \end{cases}$$

avec $\alpha = \min \{g(-\infty), g(+\infty)\}\ \text{et }\beta = \max\{g(-\infty), g(+\infty)\}.$

Exemple : Soit X une v.a. continue de densité

$$f(x) = \begin{cases} \frac{1}{2}, & x \in [-1,1] \\ 0, & sinon \end{cases}$$

Soit
$$Y=g(X)=-2X+1$$
.

Déterminer la densité de probabilité de Y.

On a
$$F_Y(y) = P(Y \le y) = P(-2X + 1 \le y) = P(X \ge (1-y)/2) = 1 - P(X \le (1-y)/2) = 1 - F_X((1-y)/2)$$

$$f_Y(y)=(1/2)f_X((1-y)/2)$$

Donc:
$$f_Y(y) = \begin{cases} \frac{1}{4}, y \in [-1,3] \\ 0, sinon \end{cases}$$

Exemple 2:

On a Y = g(X) avec $g(x) = X^2$. Dans ce cas g'(x) = 2x qui est positive pour x > 0 et négative pour x < 0, d'où g n'est pas strictement monotone. Mais, pour y > 0, on a :

 $F_Y(y) = P(Y \le y) = P(X^2 \le y) = P(-\sqrt{y} \le X \le \sqrt{y}) = F_X(\sqrt{y}) - F_X(-\sqrt{y})$ En dérivant, on obtient :

$$f_Y(y) = \begin{cases} \frac{1}{2\sqrt{y}} \left[f_X(\sqrt{y}) + f_X(-\sqrt{y}) \right] & \text{si } y > 0 \\ 0 & \text{si } y \le 0 \end{cases}$$

- 4) Caractéristiques des variables aléatoires continues
- Espérance :

L'espérance mathématique d'une v. a. continue X, de fonction de densité f est donnée par:

$$E(X) = \int_{-\infty}^{\infty} x f(x) dx$$

• Variance et écart-type :

La variance d'une v. a. absolument continue X est définie par: $V(X)=E(X-m)^2$ où m=E(X).

$$Var(X) = E(X^2) - E(X)^2$$

- **Ecart-type**: $\sigma(X) = \sqrt{V(X)}$.
- Moment d'ordre k d'une v.a. continue X, noté mk est:

$$m_k = E(X^k) = \int_{-\infty}^{+\infty} x^k f(x) dx$$

• Moment centré d'ordre k d'une v.a. X, noté μk est:

$$\mu_k = E((X - E(X))^k) = \int_{-\infty}^{+\infty} (x - E(X))^k f(x) dx$$

Remarque:

- La variance correspond au moment centré d'ordre 2: Var(X)=µ₂
- Comme pour l'espérance mathématique, si la série ou l'intégrale correspondante diverge, les moments peuvent parfois ne pas exister.
- II) Les lois usuelles continues
 - 1) Loi uniforme:

Une v.a. continue X suit une loi uniforme sur un intervalle [a, b] et on note $X \sim U$ [a, b] si sa densité de probabilité est :

$$f(x) = \begin{cases} \frac{1}{b-a} & \text{si } a \le x \le b \\ 0 & \text{sinon} \end{cases}$$

La fonction de répartition F(x) de X est:

$$F(x) = \begin{cases} 0 & \text{si } x < a \\ \frac{x-a}{b-a} & \text{si } a \le x \le b \\ 1 & \text{si } x > b \end{cases}$$

Son espérance mathématique est : E(X) =

(a+b)/2Sa variance est : $V(X) = (a-b)^2/12$.

2) Loi exponentielle:

Une v.a. X continue suit la loi exponentielle, de paramètre $\lambda > 0$, notée $X \sim \exp(\lambda)$, si sa densitéde probabilité est:

$$f(x) = \begin{cases} \lambda e^{-\lambda x} & \text{si } x \ge 0 \\ 0 & \text{si } x < 0 \end{cases}$$

Sa fonction de répartition est :

$$F(x) = \begin{cases} 1 - e^{-\lambda x} & \text{si } x \ge 0 \\ 0 & \text{si } x < 0 \end{cases}$$

Alors son espérance mathématique est: $E(X) = 1/\lambda$

• Sa variance: $V(X) = 1/\lambda^2$

3) Loi normale:

Une v.a. X suit une loi normale de paramètres m et $\sigma > 0$ et on note $X \sim N$ (m, σ) si sa densitéest :

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(x-m)^2}{2\sigma^2}}; x \in]-\infty, +\infty[$$

La fonction de répartition est :

$$F(x) = P(X \le x) = \frac{1}{\sigma \sqrt{2\pi}} \int_{-\infty}^{x} e^{-\frac{(t-m)^2}{2\sigma^2}} dt; \quad x \in \mathbb{R}$$

L'espérance mathématique : E(X)=m

La variance : $Var(X) = \sigma^2$

Proposition:

Si N (m, σ), alors la v.a Y=(X-m)/ σ suit loi normale centrée réduite N (0, 1).

Loi normale centrée réduite :

Une v.a. X suit une loi normale centrée réduite s'il suit une loi normale de paramètre m=0 et $\sigma=1$ et on note $X\sim N$ (0,1). Sa fonction de densité est :

$$f(x) = \frac{1}{\sqrt{2\pi}}e^{-\frac{x^2}{2}}; x \in]-\infty, +\infty[$$

La fonction de répartition est :

$$\Phi(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} e^{-\frac{t^2}{2}} dt; \quad x \in \mathbb{R}$$

L'espérance mathématique : E(X)=0. La variance : V(X)=1.

On peut ramener tout calcul sur la fonction de répartitions d'une variable aléatoire normale $N((m, \sigma)$ à un calcul sur la fonction de répartition , notée $\phi(x)$, dune v.a N(0,1).

En effet; $P(X \le a) = P((X-m)/\sigma \le (a-m)/\sigma) = \varphi((a-m)/\sigma)$.