Series TD 4 Linear Programming Optimization

Exercise N° 1

Consider the Linear Programming Optimization problem defined as follows:

$$\max f = 3x_1 + 2x_2$$

s.t.
$$2x_1 + x_2 \le 4$$

$$-2x_1 + x_2 \le 2$$

$$x_1 - x_2 \le 1$$

$$x_1, x_2 \ge 0$$

- Solve the above optimization problem using Simplex Algorithm by specifying the value of the optimal solution and the corresponding optimal value of the objective function.

Exercise N° 2

Use the Simplex algorithm and find the optimal solution of the following linear programming optimization problems:

1.

2.

$$\min f = x_1 - 2x_2$$

s.t.
$$2x_1 + 3x_3 = 1$$

$$3x_1 + 2x_2 - x_3 = 5$$

$$x_1 - x_2 \le 1$$

$$x_1, x_2, x_3 \ge 0$$

$$\min f = 3x_1 + 5x_2 - x_3$$

s. t.
$$-3x_1 - x_2 + x_3 \le 3$$

$$2x_1 - 3x_2 - 2x_3 \ge 4$$

$$x_1 - x_3 = 2$$

$$x_1, x_2, x_3 \ge 0$$

Exercise N° 3

We consider the following optimization problem :

$$\max f = 2x_{1} + x_{2}$$
s.t.
 $x_{1} + 2x_{2} \le 14$
 $2x_{1} - x_{2} \le 10$
 $x_{1} - x_{2} \le 3$
 $x_{1}, x_{2} \ge 0$

1. Verify that $\bar{x} = \left(\frac{20}{3}, \frac{11}{3}\right)$ is a feasible solution for the problem.

2. Check whether \bar{x} is an optimal solution of the optimization problem.

Exercise N° 4

We define the linear programming optimization problem as follows:

$$\min f = 240x_1 + 104x_2 + 60x_3 + 19x_4$$

s.t.
$$20x_1 + 9x_2 + 6x_3 + x_4 \le 20$$

$$10x_1 + 4x_2 + 2x_3 + x_4 \le 10$$

$$x_i \ge 0, i = 1,2,3,4$$

- 1- Investigate all the basic feasible solutions of the given problem.
- **2-** Among the obtained solutions, identify the optimal one.

Exercise N° 5

Considering the optimization problem defined as :

$$\max f = 6x + 7y$$

s.t.
$$6x + 7y \le 42$$

$$5x + 9y \le 45$$

$$x - y \le 4$$

$$x, y \ge 0$$

- Solve the above problem using the Simplex algorithm.