Séries TD 2 Optimisation sans Contraintes et Sous Contraintes

Exercice N° 1

On considère la fonction objective suivante :

$$f(x_1, x_1) = 20x_1 + 26x_2 + 4x_1x_2 - 4x_1^2 - 3x_2^2$$

- Trouver les valeurs des variables x_1, x_1 qui maximisent la fonction objective $f(x_1, x_1)$.

Exercice N° 2

Déterminer la valeur x^* pour laquelle la fonction suivante atteinte sa maximale.

$$f(x) = \frac{1}{10\sqrt{2\pi}}e^{-(\frac{1}{2})\left[\frac{(x-100)}{10}\right]^2}$$

Exercice N° 3

Identifier la nature des points stationnaires pour les fonctions objectives suivantes :

(1)
$$f = 2 - x^2 - y^2 + 4xy$$

(2)
$$f = 2 + x^2 - y^2$$

(3)
$$f = xy$$

(4)
$$f = x^3 - 3xy^2$$

Exercice N° 4

Considérons le problème d'optimisation défini comme suit :

Minimiser
$$f = 9 - 8x_1 - 6x_2 - 4x_3 + 2x_1^2 + 2x_2^2 + x_3^2 + 2x_1x_2 + 2x_1x_3$$

soumise à:

$$x_1 + x_2 + 2x_3 = 3$$

- Résoudre le problème d'optimisation en utilisant :
 - (a) La méthode de substitution directe des variables.
 - (b) La méthode des multiplicateurs de Lagrange.

Exercice N° 5

Considérons le problème d'optimisation défini comme suit :

Minimiser
$$f(X) = \frac{1}{2}(x_1^2 + x_2^2 + x_3^2)$$

soumise à

$$\begin{cases} g_1(\mathbf{X}) = x_1 - x_2 = 0 \\ g_2(\mathbf{X}) = x_1 + x_2 + x_3 - 1 = 0 \end{cases}$$

- Résoudre le problème d'optimisation en utilisant :
 - (a) La méthode de substitution des variables.
 - (b) La méthode des multiplicateurs de Lagrange.

Exercice N° 6

Déterminer les valeurs x, y, z qui minimisent la fonction objective définie par :

$$f(x, y, z) = \frac{6xyz}{x + 2y + 2z}$$

Dont les valeurs de x, y, z sont restreintes (limitées) par la relation suivante :

$$xyz = 16$$

Exercice N° 7

Considérons le problème d'optimisation défini par :

$$\begin{aligned} \textit{Minimiser } f &= (x_1-2)^2 + (x_2-1)^2 \\ &\textit{soumise } \text{ à:} \\ \left\{ \begin{aligned} 2 &\geq x_1 + x_2 \\ x_2 &\geq {x_1}^2 \end{aligned} \right. \end{aligned}$$

Utiliser les conditions d'optimalité et trouver quel est le point minimum local parmi les trois points suivants :

$$\boldsymbol{X}_1 = \begin{cases} 1.5 \\ 0.5 \end{cases}, \qquad \boldsymbol{X}_2 = \begin{cases} 1 \\ 1 \end{cases}, \qquad \boldsymbol{X}_3 = \begin{cases} 2 \\ 0 \end{cases}$$

Exercice N° 8

On définit le problème d'optimisation suivant :

Minimiser
$$f(x_1, x_2) = 2x_1 + \beta x_2$$

soumise à:

$$\begin{cases} g_1(x_1, x_2) = x_1^2 + x_2^2 - 5 \le 0 \\ g_2(x_1, x_2) = x_1 - x_2 - 2 \le 0 \end{cases}$$

1. Utiliser les conditions d'optimalité pour déterminer la valeur (s) de β pour laquelle(s) le point $x_1^* = 1$, $x_2^* = 2$ soit optimal au problème.