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Chapter 4: Performance Analysis of discrete linear feedback control systems 

The main objective of designing any feedback control system is to ensure its stability 

in general conditions but also this stability is required to be robust against some 

environmental properties and influences. This chapter will be fundamentally devoted 

to tackle in study and analysis the main performance properties of discrete and linear 

feedback control systems where the behavior of each system is represented by the 

corresponding discrete (or Z) transfer function. Mainly we will focus on how to study 

the stability and accuracy performance indices. 

1. Stability of discrete control systems 

In general, the stability of any closed loop control system is related to the value of 

the amplitude of the steady state response. In other words, the feedback control system 

can be viewed stable if the amplitude of its output response has a finite value as time 

tends to infinity. Conversely, the response amplitude value is unbounded, the control 

system is unstable.  

In this chapter our interest will be focused on defining and discussing the stability 

of linear time invariant discrete systems from two different perspectives; that is the 

stability regarding the steady state magnitude of the system response, where the 

asymptotic and marginal stability are to be defined. Similarly, the stability regarding 

the input and output characteristics which is called the stability in the sense of bounded 

input and bounded output (BIBO) will also be defined. Whereas the second 

perspective will be that of the stability based on pole locations of the corresponding 

discrete transfer function used to describe the behavior of the system. 

1.1. Asymptotic and Marginal Stability 

The definition of asymptotic and marginal stability is mainly related to the way and 

manner the system’s output response responds to the initial conditions. If it decays 

asymptotically to zero corresponding to the applied initial conditions, then we are 

talking about the asymptotic stability. We mathematically express this as: 

lim�→∞���	 = 0																																																																																								�4.1	 
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Where: ���	: is the output response of the discrete system. 

If however, the system’s response does not decay to zero due to the applied initial 

condition and stays bounded, in this case we are talking about marginal stability. We 

can mathematically express this as: 

lim�→∞���	 = � ,			� ≠ 0																																																																								�4.2	 
Where: �: is any constant. 

1.2. Bounded Input-Bounded Output Stability   

The bounded input bounded output stability is defined based on the forced response 

with respect to the applied bounded input. To understand this definition, we introduce 

and define mathematically the bounded discrete input as follows: 

if  ���	 be a discrete signal with: � = 0,1,2,3, …… . ,∞.  then ���	  is said to be 

bounded if its samples are upper limited; in other words, there exists a real 

number	� = �� > 0, such that: 

∀	� ∈ ℕ, |���	| < �																																																																											�4.3	 
Consequently and based on the steady state amplitude or the magnitude of the output 

response, we can mathematically define the bounded input, bounded output stability 

as: 

|���	| < !� ,					"� = 0,1,2, , ……	0 < !� < ∞ # ⇒ |���	| < !% ,					"� = 0,1,2, , ……	0 < !% < ∞ # 									�4.4	 
With: 

���	, ���	:	 Are respectively the input and output of the discrete system. 

!�, !%:	 Are respectively the input and output upper bounds. 
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1.3. Stability Definition in the Complex Z plane   

1.3.1. Mapping between s and z complex planes    

What is more important regarding the stability analysis and study of any linear time 

invariant closed loop control system whatever whether it is continuous time or discrete 

time (or sampled data) is the absolute and relative stability which are also known 

respectively as asymptotic and marginal stability. These two types of stability are 

hopefully determined by observing the location of the poles of the system’s closed 

loop transfer function in a complex plane formed by the two perpendicular axes called 

respectively as real axis and imaginary axis. 

Concerning the discrete feedback control system stability analysis, a mapping 

between the continuous time complex plane (s-plane) and the discrete time complex 

plane (z-plane) is generally established. As it is known, a continuous time closed loop 

control system stability is studied and analyzed according to the location of its poles in 

the complex s-plane in such a way the system is said to be absolutely stable when all 

its poles are located on the left hand side (LHS) of the s-plane, but if at least one pole 

is found on the Right Hand Side (RHS) of the s-plane, the system then is said to be 

unstable. Analogously, we can apply the same approach to determine the stability state 

of the discrete time control system but in the z-plane which is jointly related to the s-

plane according to the following demonstration. 

We have that the complex variables s and z are related by: 

& = '()* 																																																																																																			�4.5	 
With: ,(: is the sapling period. -: is the Laplace complex variable. 

If we consider that: 

- = . + 01																																																																																													�4.6	 
Where: .	 and 1 are respectively the real part value and the imaginary part value of the 

complex variable. 
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Substituting (4.6) in (4.5), we obtain: 

& = '�3456	)* = '�3)*456)*	 = '�3)*	. '�56)*																																		�4.7	 
Using Euler’s formula, we can write (4.7) as: 

& = '�3)*	. 8cos�1,(	 + 0 sin�1,(	= = ')*3>1,( # = |&|>1,( #									�4.8	 
We can distinguish three different cases regarding the value of the parameter .. These 

are: 

• Case of @ < 0, which corresponds to the left hand side of the s-plane, and this 

gives: 

|&| = ')*3 < 1																																																																																		 
That is the left hand side of s-plane corresponds to the inside the unity circle of 

the z-plane. 

• Case of @ = A, which corresponds to the imaginary axis of the s-plane, and this 

gives: 

|&| = ')*3 = 1																																																																																		 
That is the imaginary axis of s-plane corresponds to the boundary of the unity 

circle of the z-plane. 

• Case of @ > 0, which corresponds the right hand side of s-plane, and this gives: 

|&| = ')*3 > 1																																																																																		 
That is the right hand side of s-plane corresponds to the outside of the unity 

circle of the z-plane. 

Note: 

It is important to notice that the unit circle is defined in the complex z-plane as the 

circle of radius equals one (B = 1) and centered at the point (0,0). 

From this demonstration we can establish a mapping between s-plane and z-plane. 

This mapping is illustrated in Fig.4.1. 
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Fig.4.1 Mapping between s-plane and z-plane 

 

1.3.2. Stability Theorem of discrete control system 

From this mapping and correspondence between s-plane and z-plane, and by 

analogy with the analog feedback control system, the stability of linear time invariant 

discrete (sampled data) control system can be studied and analyzed according to the 

following results: 

• The discrete feedback control system is said to be stable when all the poles of 

the corresponding discrete or z transfer function are located inside the unit 

circle of z-plane. In other words, for a discrete control system of order C, if 
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jk , L = 1,2,3, …… , C are its poles, then we say that this system is stable if and 

only if the following condition is satisfied: 

∀	L, |jk| < 1,									L = 1,2,3, …… . , C 

• The discrete feedback control system is said to be unstable when there exists at 

least one pole of its corresponding z transfer function is located outside the unit 

circle of the z-plane. For a discrete control system of order C, we express this 

as: 

Ll	∃	jk , -�nℎ	JℎKJ	|jk| > 1	 ⇔ Jℎ'	qL-nB'J'	-�-J'O	L-	�C-JK!M' 

1.3.3. Stability conditions based on discrete transfer function and pole location   

The following stability conditions of discrete feedback control system which is 

represented by its z transfer function can be stated. The analysis and study of the 

different stability types can be easily done using these conditions and in accordance to 

the pole location. 

1.3.3.1. Asymptotic and Marginal Stability  

In order to determine whether a given discrete closed loop control system, which is 

represented by its discrete (also called) impulse transfer function is asymptotically or 

marginally stable, we accept without proof the following theorems. 

 

 

 

 

 

 

 

 

 

 

 

Theorem 4.1: Asymptotic and Marginal Stability 

In the absence of pole-zero cancellation, a Linear Time Invariant discrete 

(sampled data) control system is asymptotically stable if all of its z transfer 

function poles are located inside the unit circle of z-plane. If it exists at least 

one pole which is located on the boundary of the unit circle of z-plane, the so-

called system is said to be marginally stable. In the following example, we 

illustrate how to apply this theorem to test the asymptotic and marginal 

(critical) stability of discrete control systems. 
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1.3.3.2. Bounded Input Bounded Output (BIBO) Stability  

Regarding the discrete control system which is represented by its z transfer 

function and based on the principle of pole location in the z-plane, we can also test 

whether it is bounded input bounded output stable. To do so, the following theorem 

states the necessary and sufficient condition for BIBO stability. 

 

 

 

 

 

 

1.3.3.3. Some Results and Discussion 

The following notes can be pointed out in respect of the stability analysis of 

discrete control system. 

• In the case of there is no pole-zero cancellation in the z transfer function 

representing the LTI discrete control system, asymptotic stability is identical to 

Bounded Input-Bounded Output stability. 

• These two theorems applied to determine the stability of discrete closed loop 

control system is also valid for the same purpose of discrete open loop control 

system. 

Based on the above remarks and by combining the two theorems (4.1) and (4.2), we 

can conclude that even if there is a pole-zero cancellation, the asymptotic or marginal 

stability of the system can be concluded provided that the cancelled pole(s) is (are) 

stable; in other words, it (they) is (are located) inside or on the boundary of the unit 

circle of z-plane. This is true because stability determination is in fact the look for 

unstable poles. With the system declared stable, it means none is found. However, 

stable but hidden poles don’t lead to wrong conclusion about the stability. On the other 

hand, hidden and unstable poles do lead to draw wrong conclusion. We can notice this 

important result in the following example.  

 

Theorem 4.2: Stability in the sense of BIBO  

If there is a pole-zero cancellation, a discrete LTI closed loop control system is 

Bounded input-Bounded output stable if and only if all the poles of its 

corresponding z transfer function are located inside the unit circle.  
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Example 4.1  

Consider the linear time invariant control systems represented by the discrete transfer 

functions as below: 

1) rs�&	 = t�uvw	�uvw	�uvx.s	 
2) rw�&	 = t�uvx.w	�uvx.w	�uvx.s	 
3) ry�&	 = z�uvx.y	�uvx.w	�uvx.s	 
4) rt�&	 = {�uvx.w	�uvs	�uvx.s	 

We would like to determine whether these discrete transfer functions are 

asymptotically, marginally or Bounded Input-Bounded Output stable. 

Answer 4.1 

By referring to the two aforementioned theorems, the transfer functions rs�&	 and rw�&	 both of them present a pole-zero cancellation and their remaining poles are 

located inside the unit circle (js = 0.1, js = 0.1	KCq		|js = 0.1| < 1), hence these 

transfer functions are both BIBO stable. 

Concerning the discrete control systems represented respectively by the transfer 

functions ry�&		 and	rt�&	, it is obvious that there is no pole-zero cancellation. Since ry�&	  have two poles		js = 0.2, jw = 0.1	KCq		|js = 0.2| < 1, |jw = 0.1| < 1; that is 

both of them are located inside the unit circle and ry�&	 is asymptotically stable 

(theorem 4.1). 

For the transfer function		rt�&	, it has two poles 		js = 1, jw = 0.1	KCq		|js =1| = 1, |jw = 0.1| < 1; that is one pole is located on the boundary of the unit circle 

which indicates that it is marginally (critically) stable (theorem 4.1).  

As we can notice, the transfer function rs�&	 although it contains one unstable hidden 

pole (js = 2), it is however stable in sense of BIBO. 

Consequently, BIBO stability is not always enough to judge and conclude about the 

absolute stability of discrete control system. 
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2. Stability Criteria applied to Discrete control systems 

In this section, we will present and discuss some criteria used to judge and 

determine whether a discrete (digital) control system is stable or not by viewing and 

analyzing its open loop or closed loop z transfer function. 

Several criteria (also called tests) are available and can be used to determine and test 

the stability of a discrete control system. Mostly used are: 

• Jury stability criterion 

• Routh Hurwitz stability criterion 

• Nyquist stability criterion 

2.1. Jury Criterion of Stability 

Jury criterion of stability is an algebraic method which is used to evaluate and test 

the stability of a discrete LTI control system whose discrete transfer function is 

known. Determining the stability of the system using this criterion is based solely on 

the known coefficients of the characteristic polynomial of either the discrete open loop 

or closed loop transfer function. 

If we consider that the discrete transfer function of the control system is expressed 

as a ration of the numerator and denominator polynomials as: 

r�&	 = |�&	P�&	 = }�&	~�&	 = !x&� + !s&�vs +⋯ .+!�vs&s + !�Kx&� + Ks&�vs +⋯ .+K�vs&s + K� ,			C ≥ O,											�4.9	 
With: 

|�&	, P�&	: are respectively the z transform of the input and output of the control 

system. 

Kx, Ks, … . , K�vs, K�; 			!x, !s, … . , !�vs, !� ∶ are known real coefficients, where Kx > 0 

is a necessary condition for the use of Jury criterion. 

In this transfer function, the characteristic polynomial is determined to be: 

~�&	 = Kx&� + Ks&�vs +⋯ .+K�vs&s + K�																															�4.10	 
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2.1.1. Jury Table 

The first step in using Jury criterion to evaluate and determine the stability of the 

control system is by constructing the so-called Jury table. This is done as mentioned 

below: 

Table 4.1 Jury Table 

d_]H &x &s &w &y ……… .. &�vw &�vs &� U K� K�vs K�vw K�vy ……… .. Kw Ks Kx � Kx Ks Kw Ky ……… .. K�vw K�vs K� � ��vs ��vw ��vy ��vt ……… .. �s �x  � �x �s �w �y ……… .. ��vw ��vs  � ��vw ��vy ��vt ��vz ……… .. �x   � �x �s �w �y ……… .. ��vw   ... 
... 

... 
... 

... 
...    

�] − � �y �w �s �x     �] − � �x �s �w �y     �] − � �w �s �x      

 

Where: �k , �k , �k , �k: are inserted real coefficients and are determined as: 

�k = �K� K�vsvkKx Kk4s � ,						L = 0,1,2,3, …… . , C − 1					 
�k = ���vs ��vwvk�x �k4s � ,						L = 0,1,2,3, …… . , C − 2 

... 
�k = ��y �wvk�x �k4s� ,																		L = 0,1,2																									 
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2.1.2. Jury criterion statement  

The use of Jury criterion as a tool to determine and direct test of the stability of the 

discrete control system is based on the satisfaction of the following corresponding 

conditions. 

Consequently, a discrete control system which is characterized by its characteristic 

polynomial: ~�&	 = Kx&� + Ks&�vs +⋯ .+K�vs&s + K�							,				Kx > 0																		 
Is said to be stable if and only if all of the following conditions are simultaneously 

satisfied: 

(1) |K�| < Kx 

(2) ~�1	 > 0 

(3) �−1	�~�−1	 > 0 

(4) |��vs| > |�x| 
(5) |��vw| > |�x| 

             . 
             . 

             . 

                        	|�w| > |�x| 
 

2.1.3. Application procedure 

Jury criterion of stability is a powerful tool for studying the stability of control 

systems. It allows us, however, to only determine whether the discrete open or closed 

loop control system is stable or not stable and no more information and details about, 

for instance, the pole locations. In order to correctly use and apply this tool, a basic 

procedure is indeed required. 

First of all, we need to determine number of lines to be used in the Jury table. This 

depends on the order of the discrete control system under study; where we use the 

general formula given as: 

2C − 3																																																																																																									�4.11	 
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With ′C′ represents the order of the control system. 

After that, we construct the table as it is shown in Table 4.1, where the different 

unknown coefficients are calculated as it is indicated. 

The last step is to check and verify the Jury conditions for stability; if all these 

conditions are simultaneously satisfied, the control system of interest is stable. But if 

at least one condition is not satisfied, the system will be judged unstable. 

To illustrate the used of this procedure, we consider the following simple example. 

Example 4.2 

We assume that the discrete control system has the characteristic polynomial given by: 

~�&	 = &w + 9&	 + 8 

Use Jury stability criterion and determine the stability of the system. 

Answer 4.2 

Firstly, we determine the number of lines of the Jury table.  

We have: 

C = 2, Kx = 1, Ks = 9, K� = Kw = 8 

 Which gives: 

,ℎ'	C�O!'B	Sl	MLC'-	 = 2C − 3 = 1 

Consequently, the Jury table corresponding to our discrete control system is as shown 

below: MLRC' &x &s &w 1 Kw Ks Kx 

 

After we have constructed the Jury table, we move to check and verify the stability 

conditions, we have: 

(1) |Kw = 8| < 1 

(2) ~�1	 = 1 + 9 + 8 = 18 > 0 

(3) �−1	w~�−1	 = 1 − 9 + 8 = 0 > 0 
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We notice that conditions (1) and (3) are not satisfied, which lead us to conclude 

the instability of the given discrete control system. 

Notice that: 

In the above explanation of using Jury stability criterion, we have assumed that: Kx > 0 

In case when Kx < 0, the idea is : 

• To obtain a new characteristic polynomial: ��&	 = −~�&	 
• Then, we apply Jury stability criterion with the polynomial ��&	. 

2.2. Routh Hurwitz Stability Criterion 

Routh Hurwitz method is another criterion widely used to determine and test the 

stability feedback control systems. However, this method is most familiar to be 

directly applied for the stability study and determination of continuous time control 

systems. In this vein, to be able of using this method for discrete control system, we 

need first to explain its use for exploring the stability of continuous time system. 

Consider the continuous time feedback control system defined and described by 

transfer function in the s plane as: 

 

r�-	 = |�-	P�-	 = !�-� + !�vs-�vs +⋯ .+!s-s + !xK�-� + K�vs-�vs +⋯ .+Ks-s + Kx ,			C ≥ O, K� > 0														�4.12	 
With: P�-	, |�-	: are respectively are the Laplace transform of the input and the output of 

the control system. 

We define the characteristic polynomial of the system’s transfer function to be: 

~�-	 = K�-� + K�vs-�vs +⋯ .+Ks-s + Kx 

The Routh Hurwitz criterion of stability uses the parameters of the characteristic 

polynomial to firstly construct the so-called Routh table as shown in Table 4.2: 
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Table 4.2 Routh Hurwitz stability table 

F] K� K�vw K�vt K�v� ……… .. F]vU K�vs K�vy K�vz K�v� ……… .. 
F]v� !s !w !y ……… ..  

F]v� ns nw ny ……… ..  

F]v� 
... 

... 
...   

FU 0s     

FA �s     

 

The first two rows of the Routh table are formed by just listing the coefficients of the 

characteristic polynomial as it is shown. 

For the new coefficients !k and nk which are inserted and entered in the subsequent 

rows of the table, they are calculated as follows: 

!s =
�K�vs K�vy	 	K� K�vw�K�vs  

!w =
�K�vs K�vz	 	K� K�vt�K�vs  

!y =
�K�vs K�v�	 	K� K�v��K�vs  

The process of calculating the coefficients 	!k 	 should continue until the remaining 

values of !′-	 are all zero. When it is the case, we proceed to calculate the other 

inserted coefficient, that is: 
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ns =
� !s !w	 	K�vs K�vy�!s  

nw =
� !s !y	 	K�vs K�vz�!s  

ny =
� !s !t	 	K�vs K�v��!s  

Similarly, the process of calculating the coefficients nk should continue until the 

remaining values of n ′-	 are all zero. 

The construction of the Routh table is continued in a similar manner until we finish 

with all the inserted and introduced coefficients where the Routh array will always be 

terminated with the two rows: -s, -x which contain only respectively the two elements:  0s, �s. 
2.2.1 Statement of Routh Hurwitz Stability Criterion 

Given a continuous time control system which is defined and represented by its 

transfer function	r�-	, therefore, Routh criterion of stability states that all the roots of 

the characteristic polynomial of the transfer function (poles) have negative real 

parts if and only if the coefficients (elements) of the first column of the Routh table 

have the same sign. On the other hand, the number of roots of the characteristic 

polynomial (poles of ��F	) with positive real parts is equal to the number of sign 

changes occurred on the coefficients (elements) of the first column of Routh table. 

Consequently, the control system is stable if and only if all the coefficients (elements) 

of the first column of Routh table are of the same sign. 

          From the above statement, it is obvious that Routh-Hurwitz criterion allows us 

to just determine the stability of the control system by indicating whether all the poles 
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of transfer function are stable; that is they are all located on the left hand side of the s-

plane or some poles instead have positive real part (located on the right hand side of 

the s-plane). 

This stability condition however cannot directly be applied to investigate the 

stability of discrete-time control systems. Fortunately and thanks of using the so-called 

the bilinear transformation, it is possible to explore the stability of discrete control 

system which is represented by its z transfer function,   by making transformation from 

s-plane (also named as w-plane) to z-plane and vice-versa, hence we can apply Routh 

Hurwitz stability conditions. This bilinear transformation is defined by the following 

relationship between the continuous complex variable �  and the discrete complex 

variable	&: 

& = 1 + �1 − � ⇔ � = & − 1& + 1																																																																					�4.13	 
By performing this transformation, the inside of unit circle of z-plane is 

transformed to the left hand side (LHS) of the w-plane and the outside of the unit 

circle in z-plane is transformed to the right hand side (RHS) of w-plane. This 

transformation is illustrated in the following drawing of Fig.4.2. 

 

 

 

 

  

 

  

 

 

 

 

 

Fig. 4.2 Transforming z-plane into w-plane and vice-versa 
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Due to this transformation between the two planes, Routh Hurwitz criterion of 

stability is applied on the discrete control system as it is transformed from z-plane to 

w-plane. Therefore, the stability conclusion found in w-plane will be valid to judge the 

stability of the discrete control system in z-plane. 

For the sake of illustration, we consider the following example. 

2.2.2 Illustrative Example 

Using Routh Hurwitz stability criterion, determine whether or not the system described 

by the following z transfer function is stable. 

r�&	 = 2& + 1&y + 2&w + 4& + 7 

Solution: 

In order to be able of applying Routh Hurwitz stability criterion on the above discrete 

control system represented by the z transfer function r�&	 for its stability 

investigation, we first use the bilinear transformation and transforming the study from 

z-plane to nw-plane.  

& = � + 1� − 1 

By substituting in the transfer function, we obtain: 

r��	 = 2 �� + 1� − 1� + 1�� + 1� − 1�y + 2�� + 1� − 1�w + 4�� + 1� − 1� + 7
 

 

r��	 = 2� + 2 + � − 1� − 1�� + 1	y + 2�� + 1	w�� − 1	 + 4�� + 1	�� − 1	w + 7�� − 1	y�� − 1	y  

 

r��	 = 3� + 1� − 1�� + 1	8�� + 1	w + 2�� + 1	�� − 1	 + 4�� − 1	w= + 7�� − 1	y�� − 1	y  
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r��	 = �3� + 1	�� − 1	w�� + 1	8�w + 2� + 1 + 2�w − 2 + 4�w − 8� + 4= + 7�� − 1	y 

 

r��	 = �3� + 1	�� − 1	w�� + 1	87�w − 6� + 3= + 7�� − 1	��w − 2� + 1		 
 

r��	 = �3� + 1	�� − 1	w87�y − 6�w + 3� + 7�w − 6� + 3= + 87�y − 21�w + 21� − 7=	 
 

r��	 = �3� + 1	�� − 1	w14�y − 20�w + 18� − 4 

Now, we construct the Routh table of the new transfer function	r��	 which is 

characterized by the polynomial: 

~��	 = 14�y − 20�w + 18� − 4 

This gives: 

�y 14 18 0 �w −20 −4 0 �s !s !w !y �x ns nw ny 

 

!s =
�−20 −4	 	

14 18

�
−20

= −360+ 56−20
= −304−20

= 76

5
 

 

!w =
�−20 0	 	

14 0

�
−20

= 0 
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ns =
�76

5
0	 	

14 18

�
76

5

= 76

5
. 18

76

5

= 18 

 

nw =
�76

5
0	 	

14 0

�
76

5

= 0 

It results the following final Routh table: 

�y 14 18 0 �w −20 −4 0 �s 76

5
 

0 0 

�x 18 0 0 

 

By observing only the first column of the table we notice that: 

• Not all the elements (coefficients) of the first column of the array have the same 

sign. This leads us to conclude that the discrete control system is unstable. 

• The number of sign changes among the coefficients of the first column equals 

two (02), which means that two (02) poles of the discrete transfer function are 

unstable. 

2.2.3 Properties of Routh Hurwitz Stability criterion 

From the theoretical and practical point of view of using Routh Hurwitz criterion to 

determine and investigate the stability of feedback control systems, we can point out 

the following properties: 

1) The use of this stability criterion is completely independent of the order of the 

system’s transfer function. In other words, it is applicable whatever the order of 

the system but it is particularly more useful for higher order systems. 
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2) This stability criterion can only tell us whether the control system is stable or 

not by observing the coefficients of first column of the table. Therefore, no 

information about the degree of stability (stability margins) can be drawn and 

concluded. 

3) This criterion is not applicable to investigate the stability of feedback control 

systems which involve time delays. 

4) As the last property of Routh Hurwitz stability criterion is that a necessary but 

not sufficient condition for the poles of the control system transfer function to 

be all with negative real parts is that all the coefficients of the characteristic 

polynomial ~��	 are of the same sign (all negative or all positive).  

As a conclusion to this section and regarding the study and direct determination of 

the stability of feedback discrete (sampled data) control systems which are represented 

by a z transfer function, we have explored and discussed the two stability criteria of 

Jury and Routh Hurwitz as most familiar and widely used methods by the automatic 

control systems designers and engineers. Also these two methods (criteria) are simple 

and of straight forward use. Nevertheless, we can find other methods and criteria to 

test the stability of discrete control systems such as Nyquist method, Bode plot method 

and others. These methods however are design methods not just direct test of the 

stability of feedback control systems. 

3. Accuracy Analysis of Linear sampled data control systems 

The accuracy property is an important performance measure regarding the design 

and analysis of any feedback control system in general, and in particular for the 

discrete time control systems due the inherent characteristics caused after the sampling 

operation and the sampling period [6]. in a given feedback control system, the 

accuracy performance is measured and analyzed according to the value of the tracking 

error of the system’s response, which is defined, in the time domain, as the difference 

between the reference signal (desired response), B��	, and the actual measured output, ���	.  mathematically, we express this error as: 

'��	 = B��	 − ���																																																																										�4.14	 
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Where: '��	: denotes the tracking error. 

Regarding the accuracy of a feedback control system, two types of accuracy 

performance can be distinguished; namely: 

• Transient (dynamic) accuracy: which characterize the accuracy behavior of 

the discrete time control system within the transient state of the system’s 

response. 

• Steady state accuracy: This describes the accuracy behavior of the discrete 

time control system at the steady state of the system’s response. 

We will be interesting of steady state accuracy due to its importance of giving a clear 

idea about the stability of the control system. 

The relationship between the accuracy and the stability of discrete time feedback 

control system can be described by the following results: 

• W�H	[\]^i\d	��F^HE	_F	�hh`ib^H ⟹ 	_^	_F	�^b�dH ⟺	∀	c_/	|c_| 	< 1 

• W�H	[\]^i\d	��F^HE	_F	 ]F^b�dH	 ⟺	∃	c_/	|c_| 	> 1	 ⟹ 	_^	_F	_]bhh`ib^H 

With: jk: �L = 1,2,3, … . , C	, are the ‘n’ poles of the z transfer function. 

3.1. Steady state Accuracy 

The steady state accuracy corresponds to steady state error of the feedback control 

system. In order to calculate the steady state error, we need to work out the following 

typical block diagram of a general discrete time unity feedback control system shown 

in Fig.4.3. 

 

 

 

Fig.4.3 Typical discrete unity feedback control system 

 

 |�&	 ¡�&	 P�&	 r��&	 r��&	 
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With: 

P�&	, |�&	 and ¡�&	 are respectively the reference signal, the output signal and the 

tracking error signal, all expressed in frequency domain. 

r¢�&	 and r£�&	 are respectively the controller and the controlled process transfer 

functions. 

We now proceed to calculate the tracking error as follows: 

We have: 

¡�&	 = P�&	 − 	|�&	 = P�&	 − r¢�&	r£�&	¡�&	 ⟹ �1 + r¢�&	r£�&		¡�&	 = P�&	 
That is: 

¡�&	 = 11 + r¢�&	r£�&	 P�&																																																										�4.15	 
The steady state error corresponds to the error '��	 as � → ∞. Using final value 

theorem discussed in chapter 2, we can write: 

'(( = '�∞	 lim�→¥ '��	 = limu→s�1 − &vs	¡�&																																		�4.16	 
Substituting (4.15) in (4.16), we get: 

'(( = limu→s�1 − &vs	 11 + r¢�&	r£�&	 P�&																																					�4.17	 
If we define: 

11 + r¢�&	r£�&	 = �& − 1	¦�& − 1	¦ + §																																																			�4.18	 
Where: 

¨ and § represent respectively the order of astatism (also known as the class and the 

type of the feedback control system) and open loop static gain of the system. 
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Using (4.18), (4.17) can be rewritten as: 

'(( = limu→s ©& − 1& ª �& − 1	¦�& − 1	¦ + §P�&																																													�4.19	 
From (4.19), it is obvious that the steady state error and hence the accuracy of the 

control system depends on the following parameters: 

• The reference (Setpoint) signal, P�&	. 
• The order of Astatism (or the type) of the control system, ¨. 

• The open loop gain, §. 

All these three parameters can be used to analyze and enhance the accuracy 

performance of the digital control system as it will be mentioned in the subsequent 

subsections. 

3.2. Steady state accuracy due to input reference signal  

The accuracy of the discrete feedback control system depends on the type of the 

input reference signal. As a result, it can be studied and analyzed according to three 

standard and basic reference signals as follows: 

Table 4.3 different types of steady state errors corresponding to the types of input 

reference signals 

Type of input reference signal Generated Steady State Error 

Step P�&	 = && − 1 Position steady state error (Hc�∞	) 
Ramp P�&	 = &,(�& − 1	w Velocity steady state error (H«�∞	) 
Parabola P�&	 = ,2&�& + 1	�& − 1	3  Acceleration steady state error (Hb�∞	) 

With: ,( is the sampling time period (second). 
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The following table (Table 4.4) summarizes the values of the steady state errors 

and consequently the accuracy performance study of the discrete time control system 

regarding the three parameters; namely the type of the input reference signal as well as 

the type and the open loop static gain of the control system. 

Table 4.4 Values of steady state error depending on control system’s order of 

Astatism, input reference signal and open loop gain 

Order of Astatism of the Control System ¬ = A ¬ = U ¬ = � ¬ > 0 

Steady State 

Errors 

 (HFF) 

Hc�∞	 11 + § 0 0 0 

H«�∞	 ∞ 
,(§  0 0 

Hb�∞	 ∞ ∞ 
,(w§  0 

 


