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Chapter 1: General Structure of Discrete Time Control System 

Digital systems such as computers operate on digital signals; accordingly, the need 

for handling digital signals is also increased. Due to high-speed processing capabilities 

of modern digital systems, wide range of applications make use of digital signals, 

which further accelerate the development of the use of digital signals. Hence, digital 

control systems have gradually become more prominent in today’s industries.  

In this chapter we will give the main definitions relating to sampled and discrete 

signals. We also explore the operation and procedure of obtaining discrete and 

sampled signals from the corresponding continuous time signals. We also give both 

mathematical and graphical representation of the basic and standard discrete signals 

which are widely employed in designing and analyzing a sampled data control 

systems. We finish the chapter by describing the general structure and block diagram 

of a typical discrete time feedback control system. 

1. Basic Definitions 

1.1. What is a signal? 

A signal can be defined as a physical quantity that is generated by the evolution of 

an engineering process. It carries information and measurement about the behavior of 

that process. For example: the temperature, pressure, voltage, current, sound, etc. It is 

however important to know that any signal as a physical quantity evolves in time with 

a variable amplitude. Hence it can be represented as a function where the amplitude 

takes different values at different corresponding time instants.   

1.2. Continuous time (Analog) signal   

A continuous time signal is defined as a signal which is both continuous in time 

and amplitude. Sometimes, a continuous signal is also called analog signal and both 

names are used interchangeably. The continuous (analog) signal is originally found in 

nature and is usually measured and generated by the different sensors. 

1.3. Discrete time (digital) signal 

In any data acquisition system, the measured values of the physical quantities are 

taken at regular periods of time. Therefore, the time is never being considered as 
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continuous but discrete. As such, a discrete time signal is defined as that obtained by 

converting a continuous signal at discrete instants of time. This is called discretization 

of continuous signal; hence the main property of a discrete signal is that it takes finite 

amplitude values at discrete instants of time.   

1.4. Sampled signal 

A sampled signal is defined as a continuous signal which is discretized at a regular 

time step and interval called sampling period. We will come back to explain in more 

details in the foregoing sections of this chapter. 

1.5. Quantification 

The quantification is defined as the process and operation of attributing to each 

amplitude value of the sampled signal a binary number; that is a pattern of bits 0s and 

1s.    

1.6. Digital signal  

A digital signal can be defined as a sampled signal with quantified amplitude. 

1.7. Causal signal  

A causal signal is defined to be of zero values for negative instants of time. This 

signal is of paramount importance for the design and analysis of control systems in 

general. Therefore, regarding the scope of course, we will be interesting only with 

causal signals and causal systems. 

2. Laplace transform: A Review 

2.1. Definition  

Laplace transform is a mathematical tool used to fundamentally solve linear 

differential equations. In the context of control system design and analysis, this tool is 

employed to develop and derive a continuous input-output modeling and 

representation of the system (process) to be controlled or the whole control system. 

The use of Laplace transform also makes ease a direct and qualitative analysis of the 

effect of different environmental variables and parameters of the system’s behavior 

and performance. 



Basics in Design and Analysis of Discrete Time Control Systems 

 

Dr. Yassine YAKHELEF 
4 

Mathematically, the mapping of the continuous time function �(�) of the variable 

‘�’ to the frequency domain function �(�)  of the complex variable ‘�’ is called 

Laplace transform. It is defined as [1]: 

�(�) = ℒ	�(�)
 = � �(�). ���
∞

�∞
��																																																		(1.1) 

For �(�) causal signal, that is:  �(�) = 0, ���			� < 0, Laplace transform definition 

becomes: 

�(�) = ℒ	�(�)
 = � �(�). ���
∞

�
��																																																			(1.2) 

Where: 

ℒ	. 
 : is the symbol given to Laplace transform operator. 

Expressions (1.1) and (1.2) define respectively two-sided and one-sided Laplace 

transforms. 

In both expressions, we read that Laplace transform of the continuous time signal �(�) 

is �(�). 
Example: 

Let �(�) = ��� be continuous and causal signal.  

Calculate its Laplace transform. 

Answer: 

We apply the definition (1.2) on the signal �(�), we get : 

�(�) = ℒ	�(�)
 = � �(�). ���
∞

�
�� = � ��� . ���

∞

�
�� = � �(���)�

∞

�
�� 

�(�) = 1−(� + �)  �(���)�!�∞																																																																											 
Therefore: 

ℒ	�(�) = ���
 = �(�) = 1(� + �) 
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2.2. Properties of Laplace Transform 

Many important properties are characterizing Laplace transform. If we have: 

�(�) = ℒ	�(�)
																																																																																					(1.3) 

We summarize the main of these properties in Table 1.1 as follows: 

Table 1.1 Main properties of Laplace transform 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

N° Property  Time signal Laplace Transform  

1 
Linearity 

 
#�$(�) ± &�'(�) #�$(�) ± &�'(�) 

2 
Time 

Delay 
�(� − () �)� . �(�) 

3 
Time 

Advance 
�(� + () )� . �(�) 

4 

Complex 

Translation 

 

��� . �(�) �(� − () 

��� . �(�) �(� + () 

5 
Time 

Scaling 
�(�/�) ��(��) 

6 Derivative 
��(�)��  ��(�) − �(0�) 

7 
Derivative 

of Order  n 

�(+)�(�)��+  

�+�(�)
− , �+�$�-+�$

-.�
. /�(-)�(�)��- 0�.�1 

8 Integral ��(2)�

�
�2 

�(�)� + ��$(0�)�  

9 

Initial 

value 

theorem 

�(0�) = lim�→�1 �(�) lim�→�7 ��(�) 

10 
Final value 

theorem 
�(∞) = lim�→7 �(�) lim�→� ��(�) 
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2.3. Laplace transform of basic and familiar signals 

In the following table (Table 1.2), we mention and summarize the Laplace transform 

of the most basic signals and widely employed in the design and analysis of 

continuous time control systems. 

Table 1.2 Laplace transform of basic signals 

N° 
Time domain function : 9(:) 

Laplace  Transform: ;(<) 

1 =(�) 1 

2 >(�) 
1� 

3 �. >(�) 
1�' 

4 �+. >(�) 
?!�+�$ 

5               ��� . >(�) 
1� + � 

6 �+. ��� . >(�) 
1(� + �)+�$ 

7 sin(C�) . >(�) 
C�' + C' 

8 cos(C�) . >(�) 
��' + C' 

9         ��� sin(C�) . >(�) 
C(� + �)' + C' 

10          ��� cos(C�) . >(�) 
� + �(� + �)' + C' 

 

Where: 

=(�): is the unit impulse (Dirac) signal (function). 

>(�): is the unit step signal (function). 

3. Sampling of Continuous (Analog) signals 

3.1. Definition of Sampling  

The sampling can be defined as the process and operation of converting a 

continuous time (analog) signal �(�) into discrete time signal consisting of a series of 
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impulses of amplitudes determined as the values of the continuous time signal �(�) at 

the sampling instants [2]. Consequently, the sampling operation produces a sequence 

of samples denoted by 	�(GH�)
 from the given analog signal	�(�). We express this 

sequence of samples as: 

	�(GH�)
 = 	�(0), �(1H�), �(2H�), … . , �(GH�)
																												(1.4) 

We denote the sampled signal as; 

�∗(�) = �(GH�) = 	�(GH�)
																																												 
= 	�(0), �(1H�), �(2H�), … , �(GH�)
 = 	��, �$, �', … , �-
				(1.5) 

Where: 

G: is an integer ; G∈ℕ. 

H�: is the sampling period (H� > 0). 

GH�: are defined to be the sampling time instants. 

�(GH�) = �- = �∗(�): is the notation used to refer the sampled signal obtained to the 

amplitudes of the continuous time signal �(�) at the corresponding sampling time 

instants GH� . 
3.2. Principle of Operation of Sampling 

To understand the principle of operation of sampling, we need to define the 

following two important functions: 

3.2.1. Dirac (Impulse) Function: =(�) 

The Dirac function			=(�), also known as Kronecker function, is a non-practical 

signal. Mathematically, it is defined to be a rectangular signal for which the time width 

tends to zero and the amplitude (length) tends to infinity with an area equals one. This 

is expressed as [3]: 

=(�) =
PQQ
R
QQS
∞,							T�		� = 0																																															0,					∀		� ≠ 0																																																			

	 � =(�)�� = 1																																∞

�∞
																			

/ 																	(1.6) 
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As a shifted version of =
following: 

=(� − ��

 

3.2.2. Train of Impulses: X
The train of impulses, denoted as 

the sampler in the field of sampling.

Y(�) = =
Graphically, the sampling function is represented, using Matlab, as it is shown in the 

figure below: 

Fig.1.1 Graphical representation of train of impulses signal
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=(�) at the time instant ��, =(� − ��) is defined by the 

�) =
PQQ
R
QQS
∞,							T�		� = ��																																		0,					∀		� ≠ ��																																						

	 � =(�)�� = 1																																∞

�∞
				

XZ(:)  

The train of impulses, denoted as =[(�),  is known to be the sampling function or 

the sampler in the field of sampling. Mathematically it is defined as: 

=[\(�) = , =(� − GH�)∞

-.�
																																	

Graphically, the sampling function is represented, using Matlab, as it is shown in the 

Graphical representation of train of impulses signal

) is defined by the 

														
														
																

/ 							(1.7) 

known to be the sampling function or 

 

																							(1.8) 

Graphically, the sampling function is represented, using Matlab, as it is shown in the 

 

Graphical representation of train of impulses signal 
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Based on the above definitions of the Dirac and the train of impulses function as 

basic signals, the sampling of an analog signal �(�) can be mathematically described 

as the product and multiplication of the continuous signal to be sampled by the train of 

impulses (sampler), Y(�). 
For � > 0, we can write: 

�∗(�) = �(GH) = �(G) = �(�) × Y(�) = �(�) × =[(�)			 
�∗(�) = �(�) × , =(� − GH)∞

-.�
= ,�(GH) × =(� − GH)∞

-.�
																	(1.9) 

We can illustrate the sampling operation as it is shown in the following figure: 

 

 

 

 

 

 

Fig.1.2 Schematic illustration of sampling 

3.2.3. Modeling and Representation of a Sampler 

For the sake of simplifying the study and analysis of sampled data control systems, 

the sampling mechanism depicted and illustrated in Fig.1.2 above is conveniently 

modeled and represented by an ideal switch that closes at each sampling instant for an 

infinitesimal time duration (� → 0) and keep open thereafter for a time duration 

corresponding to the value of the sampling period H�. This model given to the sampler 

is shown in the following figure (Fig.1.3). 

 

 

 

  

 

Fig. 1.3 Modeling of a sampler using an ideal switch 

 

H 

�∗(�) 

�(G�) 

�(�) × 

=[\(�) 

�∗(�) �(�) 

 

H� 

�∗(�) 

�(G�) 

�(�) Sampler 

of sampling period (	Z<	) 
�∗(�) 

�(G�) 

�(�) 
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3.2.4. Typical standard sampled signals

The outcome of the sampling operation described above is the sampled signal or a 

discrete time signal. To end up this section, we give some examples of the most 

familiar and widely used discrete time signals as long as the sampled data control 

systems are concerned. It is im

described. 

3.2.4.1. Unit impulse discrete time signal: 

The sampled or discrete time of the impulse or Dirac signal is defined as:

=(G) = a
However, the discrete time unit impulse signal shifted in time at 

=(G − G�

Graphically, both discrete time unit impulse signal and its time shift version are 

represented according to the figure below:

Fig.1.4 Graphical representation of discrete impulse signal
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sampled signals 

sampling operation described above is the sampled signal or a 

discrete time signal. To end up this section, we give some examples of the most 

familiar and widely used discrete time signals as long as the sampled data control 

It is important to notice that only causal signals are being 

Unit impulse discrete time signal: X(bZ<) 

The sampled or discrete time of the impulse or Dirac signal is defined as:

a1,						T�		G = 0																0,							∀		G ≠ 0																/ 																																
However, the discrete time unit impulse signal shifted in time at G� is defined as:

�) = a 1,						T�		G = G�									0,									∀			G ≠ G�							/ 																										
Graphically, both discrete time unit impulse signal and its time shift version are 

represented according to the figure below: 

Graphical representation of discrete impulse signal

sampling operation described above is the sampled signal or a 

discrete time signal. To end up this section, we give some examples of the most 

familiar and widely used discrete time signals as long as the sampled data control 

portant to notice that only causal signals are being 

The sampled or discrete time of the impulse or Dirac signal is defined as: 

																					(1.10) 

is defined as: 

																					(1.11) 

Graphically, both discrete time unit impulse signal and its time shift version are 

 

Graphical representation of discrete impulse signal 
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3.2.4.2. Unit step discrete time signal: 

When sampled, the unit step signal

>(G) = a1

The sequence definition of the discrete time 

>(G) = >
Similarly, we can define a time shift at 

>(G − G�

In the following figure, we show the graphical representation of the sampled unit step 

signal as well as its time shifted version, where the sampling period is taken arbitrary 

as: H� = 1	�c. 

Fig.1.5 Graphical representation of discrete 
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Unit step discrete time signal: d(b) 

he unit step signal is defined as: 

a1,					∀		G e 0			0,					∀		G < 0 / 																																																	
The sequence definition of the discrete time (sampled) unit step signal is given as:

>(GH�) = >∗(�) = f 1g								↑-.�, 1,1,1,1, … 1i	
Similarly, we can define a time shift at G� of the above unit step signal as:

�) = a1,					∀		G e G�			0,					∀		G < G�		/ 																																				
In the following figure, we show the graphical representation of the sampled unit step 

signal as well as its time shifted version, where the sampling period is taken arbitrary 

Graphical representation of discrete unit step signal

 

																					(1.12) 

unit step signal is given as: 

i																					(1.13) 

of the above unit step signal as: 

																					(1.14) 

In the following figure, we show the graphical representation of the sampled unit step 

signal as well as its time shifted version, where the sampling period is taken arbitrary 

 

signal 
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3.2.4.3. Unit Ramp discrete time signal: 

The unit ramp sampled signal is defined according to the following description:

�(G) = aG,
0,

As a sequence, it is defined as:

�(G) = �
�(G) = ,

-
When it is time shifted at G�

�(G − G�

Using Matlab, the graphical representation of 

in Fig.1.6 below, where the sampling period is taken to be: 

Fig.1.6 Graphical representation of discrete ramp signal
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Unit Ramp discrete time signal: j(b) 

The unit ramp sampled signal is defined according to the following description:

,			∀		G e 0			,					∀		G < 0/ 				��:				�(G) = aGH� ,			∀		G e	0,					∀		G <
As a sequence, it is defined as: 

�(GH�) = �∗(�) = , �(GH�)=(� − GH�)∞

-.�
			

,(GH�)=(� − GH�)∞

-.�
= f 0g								↑-.�, 1,2,3,4, …

�, it is defined as : 

�) = aG,			∀		G e G�			0,					∀		G < G�
/ 																																						

Using Matlab, the graphical representation of a typical discrete ramp signal

below, where the sampling period is taken to be: H� = 1	�c

Graphical representation of discrete ramp signal

The unit ramp sampled signal is defined according to the following description: 

e 0		
< 0 / 														(1.15) 

) 																																	 
…Gi														(1.16) 

																					(1.17) 

a typical discrete ramp signal is shown 

�c. 

 

Graphical representation of discrete ramp signal 
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3.2.4.4. Sinusoidal Discrete time signal 

If we consider �(�) being unity

defined as: 

�(�) = �T?
When sampled at a regular sampling period 

defined as: 

�∗(�) = �(GH�) =

�∗(�) = ,sin	(∞

-.�
Using MATLAB, the sampled sinusoidal signal can be depicted in 

comparison is done with the corresponding continuous time sinusoidal signal. We also 

notice that the sampling period is taken in this case to be: 

 

Fig.1.7 Graphical representation of discrete time sinusoidal signal
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Sinusoidal Discrete time signal  

unity amplitude continuous time and causal sinusoidal signal 

�T?(�), ∀� e 0																																																		
When sampled at a regular sampling period H�, the obtained discrete time signal is 

) = �(G) = ,�(GH�)=(� − GH�)∞

-.�
																

(CGH�)=(� − GH�) = a sin(CGH�),					∀		G	0,																									∀		G
, the sampled sinusoidal signal can be depicted in 

comparison is done with the corresponding continuous time sinusoidal signal. We also 

notice that the sampling period is taken in this case to be: H� = 1	�c.

Graphical representation of discrete time sinusoidal signal

 

continuous time and causal sinusoidal signal 

																					(1.18) 

, the obtained discrete time signal is 

														 
G e 0
G < 0	/ 									(1.19) 

, the sampled sinusoidal signal can be depicted in Fig.1.7. A 

comparison is done with the corresponding continuous time sinusoidal signal. We also 

. 

 

Graphical representation of discrete time sinusoidal signal 
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4. Selecting the Appropriate Sampling Period 

It is known in digital signal processing domain that applying sampling operation to 

convert continuous time (analog) signal into discrete time (digital) signal is 

accompanied by an inherent error which is attributed to the choice of the sampling 

period	H�. Unfortunately, this error causes an important loss of information contained 

in the signal if the value of the sampling period is not conveniently chosen. This 

problem is also encountered when the design and analysis of digital control system is 

concerned. In order to solve this problem and achieving a good sampling, Shannon 

theorem is applied to choose the desired and convenient the sampling period. Using 

this theorem, it is ensured that the sampling operation is performed with minimum loss 

of information. 

4.1. Shannon theorem  

Shannon theorem states that for a continuous time signal to be built and regenerated 

from a given sequence of samples with a sampling period H�, the sampling angular 

frequency defined as C� = 'k[\ = 2l�� must be at least two times greater than the 

angular frequency of the of the continuous time signal. This statement can be 

interpreted as: 

If we assume �(�) to be a continuous time signal of finite energy, hence having a 

calculated Fourier transform denoted by �(C) and illustrated as shown in Fig.1.8 

below: 

 

Fig.1.8 Frequency spectral of a given continuous time signal �(�) 
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Where: 

C: is the angular frequency of the continuous time signal. 

Cm�n: is the greatest angular frequency contained in the frequency spectral �(C). 

Then the Fourier transform	�∗(C) of the sampled signal 	�∗(�) can be defined as: 

�∗(C) = 1H� , �(C − GC�)∞

-.�∞
																																																								(1.20) 

We notice that �∗(C) is an infinite frequency spectrum obtained from the periodic 

spectrum of �(C) around the sampling angular frequency C�.  

By applying Shannon theorem, a perfect sampling operation is obtained if the 

sampling period is chosen such that the following relationship is satisfied: 

C� e 2Cm�n 																																																																																								(1.21)	
The illustration of the frequency spectrum of the sampled signal �∗(C) is shown in the 

following Fig. 1.9. 

 

Fig. 1.9 Case of frequency spectrum F∗(ω) without aliasing phenomenon 

 

The effect of sampling period on the performance and operation of the digital control 

system can be seen from the following practical issues [2]: 

� When performing sampling, it is required to apply and respect the Shannon 

theorem. 

� If the sampling period H� is too small, the robustness and disturbance 

rejection performance of the feedback control system is highly deteriorated. 

� If on the other hand the sampling period H� is sufficiently high, high 

memory storage is meaninglessly needed.  
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In the following table (Table 1.3), it is given the appropriate values of the sampling 

period regarding some industrial processes subjected to sampling operation [8]. 

Table 1.3 Typical sampling period values for some processes 

Signal  
Recommended sampling period H� 

Current in Electric 

Drives 
50 < H� < 100	(p�)	

Position in Robotics 0.2 < H� < 1	((�)	
Position in Machine 

Tools 
0.5 < H� < 10	((�)	

Rate Signal 1 < H� < 3	(�)	
Level Signal 5 < H� < 10	(�)	
Pressure 1 < H� < 5	(�)	
Temperature 10 < H� < 45	(�)	

 

5. Typical block diagram of discrete time feedback control system   

Throughout the previous sections and subsections of this chapter, the main and 

basic notions and concepts which are used in the context of discrete time (sampled 

data) control systems are defined and described. However, the crucial idea in all of 

these concepts is the sampling operation which allows the conversion of analog 

(continuous time) signals into discrete time signals. Due to the fact that the majority 

the controlled processes are of analog nature, the use and implementation of these 

signal converters are principal and mandatory to be able of performing the desired 

control tasks. 

In order to accommodate the functional and operational requirements in terms of 

signal type processing, any discrete time (digital) control system should incorporate 

these signal conversion devices. These are called respectively Analog-to-Digital and 

Digital-to-Analog Converters, which are respectively abbreviated as ADC and DAC. 

Consequently, the general structure of the block diagram representing a typical 

discrete time feedback control system is as illustrated in Fig.1.10. 
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Fig.1.10 Typical block diagram of discrete time feedback control system 
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5.1. Description of Basic Components of Digital Control system  

The operation of the digital control system which is represented by the above 

typical block diagram is fully accomplished through the following three (03) 

functional blocks: 

• Analog to Digital Converter (A/D): 

This block consists of an electronic device that converts the continuous time 

(analog) signal to a digital (binary) signal in order to be compatible with the digital 

controller (micro-processor or microcontroller or any digital-like device) operation. 

Because, for the computer to respond to any outside event, the data representing this 

event must be converted into digital form (1 to 5 volts), which is being suitably 

processed and wired to the computer’s processor [4].  

• Digital to Analog Converter (D/A): 

Digital to Analog Converter (D/A) is an electronic device responsible of converting 

the output of the digital controller (pattern of 0s and 1s) into analog (continuous 

time) signal to be compatible with the “plant” input (continuous time signal). 

• Digital controller:   

is the heart of the digital control system, which is an algorithm (software program) 

implemented to process digital data and generates the appropriate control signal 

applied at the input of the controlled plant. 

The content of the subsequent chapters will be based on the above typical and general 

structure of discrete time feedback control system. 

5.2. Digital Control Systems vs. Analog Control System 

Regarding discrete time (digital) control systems, the following advantages over 

continuous time (analog) control systems can be pointed out: 

� As the hardware implementation of analog control systems is a circuit 

composed of passive and active electronics devices where their properties are 

highly affected by external factors such as temperature. Hence, the 

performance of the control system is strongly influenced. However, digital 

control systems are software based implemented, which means that their 
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dynamic performances are far from the influence of such external affecting 

factors. 

� Since digital control systems are software implemented, consequently, their 

size is too smaller compared with that of analog control system. 

� One of the most important property and advantage of a digital control system 

over the analog control system consists in its high reproducibility to fulfill the 

targeted application requirements and specifications. This is because there is an 

unlimited means of programming. This greatest advantage makes the digital 

technology more flexible in case of any required modification  

� Another valuable advantage of digital control systems consists in their ease of 

troubleshooting the faults and defected operating conditions compared to the 

analog control system for which the troubleshooting process is more difficult 

and laborious. 

Despite these great advantages of implementing discrete time (digital) control systems, 

they however presents some disadvantages such as: 

� The mathematical analysis and design of a discrete-time control system is more 

complex and tedious as compared to continuous-time control system 

development. This is because of the additional analysis and design parameter, 

particularly that of the sampling period. 

� Because the A/D converter, D/A converter, and the digital computer in reality 

delay the control signal input (sampling period is not zero), the performance 

objectives can be more difficult to achieve since the theoretical design 

approaches usually do not model this small delay. 

 


