
Chapter  Linear Programming Optimization Problem 

1- Introduction 

         Linear programming is an optimization problem solving method applicable for solving problems in which both the 

objective function and the constraints appear as linear functions of the decision (design) variables. 

         The constraint equations in LP optimization problem may be under the form of equalities or inequalities. 

LP is in fact a real revolutionary development that permits us to make optimal decisions in complex situations. Although 

it encompasses (comprises) several techniques, the Simplex method continues to be the most efficient and popular 

method for solving general LP optimization problems. 

2- Standard form of Linear Programming Optimization Problem   

The general linear programming optimization problem can be sated under the following standard form: 
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Where: �#$ , �$, �$, 	� = 1,2,3,… . ,�,			� = 1,2,3,…… , ��; are known constants. 
$, 	� = 1,2,3,… . , ��: are known to be the design (decision) variables, which represent the solution to the 

optimization problem. 
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The characteristics of LP optimization problem as it is stated in the standard form are: 

• The objective function is of the minimization type. 

• All the constraints are of the equality type. 

• All the decision variables are positive (nonnegative). 

It is now shown that any linear programming optimization problem can be expressed in standard form by using the 

following transformations. 

1. The maximization of the function �	)� is equivalent the minimization of the negative of the same function, that 

is: ��
������	)� ⇔ ��������9−�	)�;	 
Consequently, the objective function can be stated in the minimization form in any linear programming problem. 

2. If a constraint  appears as in the form of inequality, that is “less than or equal to” such that: �<�
� + �<


 + �<�
�, … . , �<�
� ≤ �< 

Then, it can be converted into equality type using the slack variable, that the conversion is performed by adding a 

nonnegative slack variable 
�>� as follows: �<�
� + �<
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3. Similarly, if a constraint is in the form of “greater than or equal to” type of inequality, that is: �<�
� + �<
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�, … . , �<�
� ≥ �< 

It can be converted into equality type using the technique of slack variable. In this case, by subtracting the slack 

variable as: �<�
� + �<


 + �<�
�, … . , �<�
� − 
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Where, in this case, the nonnegative variable 
�>� is called surplus variable. 

3- Solution of a System Linear Simultaneous Equations  

Before studying the most general method of solving a linear programming optimization problem, it will be useful to 

review the methods of solving a system of linear equations. 

Hence in the present section we review some of the elementary concepts of linear equations. 

Consider the following system of � linear equations of � unknowns. 
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Assuming that this set of equations simultaneously possesses a unique solution.  

A method of solving this system of equations consists of reducing the equations to a form known as canonical form.  It is 

well known from elementary algebra that the solution to the system (1) will not be altered the following elementary 

operations: 

� Any equation CE  is replaced by the equation FCE, where F is a nonzero constant. 

� Any equation CE  is replaced by the equation CE + FCG, where CG, is any other equation of the system. 

By making use of these elementary operations, the system of equations (1) can be reduced to a convenient equivalent 

form as follows. 



Let us select some variable 
# and try to eliminate it from all the equations except the ��ℎ one (for which �$# ≠ 0 ). This 

can be accomplished by dividing the ��ℎ equation by �$#  and subtracting �<# times the results from each of the other 

equations, F = 1,2,3,… . , 	� − 1�, 	� + 1�, …… , �. 

The resulting system of equation can be written as: 
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The procedure of eliminating a particular variable from all but one equation is called a pivot operation. 

The system of equations obtained by the pivot operation has exactly the same solution as the original set of equations 

(1). This is the vector ) that satisfies both sets (1) and (2) and vice versa. 

Next, if we take the system of equations (2) and perform a new pivot operation by eliminating 
G, ���	� ≠ �, in all the 

equations except the �	�ℎ equation, �	 ≠ 	� , the zeros or the 1s in the ��ℎ column will not be disturbed. The pivotal 

operations can be repeated by using a different variable and equation each time until the system of Eqs. (1) is reduced 

to the form: 
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This system of equations (3) is said to be in canonical form and has been obtained after carrying out � pivot operations. 

From the canonical form, the solution vector can be directly obtained as: 


# = �#"	,				1,2,3,… . , �																																																							4� 
 
Since the set of equations (3) has been obtained from equations (1) only through elementary operations, the system of 

equations (3) is equivalent to the system of equations (1). Thus the solution given by equation (4) is the desired solution 

of the set of equations (1). 

4- Pivotal Reduction of a General System of Equations 

  Instead of a square system, let us consider a system of � equations in � variables with �	 ≥ 	�. This system of 

equations is assumed to be consistent so that it will have at least one solution: 
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The solution vector(s) ) that satisfy the set of equations (5) are not evident from the equations. However, it is possible 

to reduce this system to an equivalent canonical system from which at least one solution can readily be deduced. If 

pivotal operations with respect to any set of m variables, say, 
�, 

, 
�, … . , 
 , are carried out, the resulting set of 

equations can be written as follows: 



 

 

 

 

 

 

 

 

 

 

One special solution that can always be deduced from the system of equations (5) is 


# = L�#"	,				� = 1,2,3,… . ,�																								0,			� = � + 1,� + 2,� + 3,… . , �	D 																																																							7� 
 

     This solution is called a basic solution since the solution vector contains no more than � nonzero terms. The pivotal 

variables 
#	, �	 = 	1, 2, . . . , �, are called the basic variables and the other variables 
#	, �	 = 	�	 + 	1,�	 + 	2, . . . , �, are 

called the nonbasic variables.  

     Of course, this is not the only solution, but it is the one most readily deduced from equations (6). If all �#"	,				� =1,2,3,… . ,�, in the solution given by Eqs. (7) are nonnegative, it satisfies Eqs. (???) in addition to Eqs. (????),defining 

the LP optimization problem, and hence it can be called a basic feasible solution. 

       It is possible to obtain the other basic solutions from the canonical system of Eqs. (6). We can perform an additional 

pivotal operation on the system after it is in canonical form, by choosing �NOPP  (which is nonzero) as the pivot term, Q	 > �, and using any row S	(among 1, 2, . . . , �). The new system will still be in canonical form but with 
T as the 

pivotal variable in place of 
N. The variable 
N, which was a basic variable in the original canonical form, will no longer 

be a basic variable in the new canonical form. This new canonical system yields a new basic solution (which may or may 

not be feasible) similar to that of Eqs. (7). It is to be noted that the values of all the basic variables change, in general, as 

we go from one basic solution to another, but only one zero variable (which is nonbasic in the original canonical form) 

becomes nonzero (which is basic in the new canonical system), and vice versa. 

Example: 

Find the basic solution corresponding to the system of equations: 
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Solution: 

First we reduce the system of equations into canonical form with 
�, 

, 
� as basic variables. To do that, we pivot on 

the element ��� = 2 to obtain: 
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Now, we pivot on �

P = − �
, we get: 
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Now, we pivot on ���P = −8, we get: 
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From this canonical form, we can readily write the basic solution consisting in the basic variables 	
�, 

, 
�� in terms of 

the variable 
U as: 
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If Eqs. (I0), (II0), and (III0) are the constraints of a linear programming optimization problem, the solution obtained by 

setting the independent variable 
U equal to zero is called a basic solution. In the present case, the basic solution is 

given by: 
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 = 1 + 0	
� = 3 − 0	

D ⇔
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D 
And the variables 	
�, 

, 
�� are called basic variables, and 
U is called nonbasic (or independent) variable. 

Since this basic solution has all 
$ 	≥ 	0		�	 = 	1, 2, 3, 4�, it is a basic feasible solution. 

        If we want to move to a neighboring of the basic solution, we can proceed from the canonical form given by Eqs. 

(I3), (II3), and (III3). Thus if a canonical form in terms of the variables 	
�, 

, 
U� is required, we have to bring 
U into 

the basis in place of the original basic variable 
�. Hence we pivot on ��UPP = 3 in Eq. (III3). This gives the desired 

canonical form as : 
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This new canonical system gives the new basic solution of 	
�, 

, 
U� in terms of 
� as 
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And the corresponding basic solution 	
�, 

, 
U� is obtained by taking the nonbasic (independent) variable equals zero; 
� = 0 as: 
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This basic solution can also be seen to be a basic feasible solution.  

     If we want to move to the next basic solution with 	
�, 
�, 
U� as basic variables, we have to bring 
� into the current 

basis in place of 

. Thus we have to pivot on �
UPP = �� in Eq. (II4). This leads to the following canonical system: 
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This new canonical system gives the new basic solution of 	
�, 
�, 
U� in terms of 

 as: 
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And the corresponding basic solution 	
�, 
�, 
U� is obtained by taking the nonbasic (independent) variable equals zero; 

 = 0 as: 

?@@
A
@@B

� = 3	
� = 6	
U = −1	

 = 0	

D 

Since all the 
$	are not nonnegative, this basic solution is not feasible. 

Finally, to obtain the canonical form in terms of the basic variables 	

, 
�, 
U�, we pivot on ��
PP = 1 in Eq. (I5), thereby 

bringing 

 into the current basis in place of 
�. This gives: 
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This new canonical system gives the new basic solution of 	

, 
�, 
U� in terms of 
� as: 
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And the corresponding basic solution 	

, 
�, 
U� is obtained by taking the nonbasic (independent) variable equals zero; 
� = 0 as: 
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Since all the 
$	are not nonnegative, this basic solution is not feasible. 

5- Motivation to the Simplex Method  

    Given a system in canonical form corresponding to a basic solution, we have seen how to move to a neighboring basic 

solution by a pivot operation. Thus one way to find the optimal solution of the given linear programming problem is to 

generate all the basic solutions and pick the one that is feasible and corresponds to the optimal value of the objective 

function. This can be done because the optimal solution, if one exists, always occurs at an extreme point or vertex of the 

feasible domain. If there are � equality constraints in � variables with �	 ≥ 	�, a basic solution can be obtained by 

setting any of the 	�	 − 	�� variables equal to zero. The number of basic solutions to be inspected is thus equal to the 

number of ways in which � variables can be selected from a set of � variables, that is, 

\��] = �!	�	 − 	��!�! 
Example: 

if �	 = 	10 and �	 = 	5, we have 252 basic solutions, and if �	 = 	20 and �	 = 	10, we have 184,756 basic solutions. 

      Usually, we do not have to inspect all these basic solutions since many of them will be infeasible. However, for large 

values of � and �, this is still a very large number to inspect one by one. Hence what we really need is a computational 

scheme that examines a sequence of basic feasible solutions, each of which corresponds to a lower value of � until a 

minimum is reached. The Simplex method of Dantzig is a powerful scheme for obtaining a basic feasible solution; if the 

solution is not optimal, the method provides for finding a neighboring basic feasible solution that has a lower or equal 

value of	�	. The process is repeated until, in a finite number of steps, an optimum is found. 

       The first step involved in the Simplex method is to construct an auxiliary problem by introducing certain variables 

known as artificial variables into the standard form of the linear programming problem. The primary aim of adding the 

artificial variables is to bring the resulting auxiliary problem into a canonical form from which its basic feasible 

solution can be obtained immediately. Starting from this canonical form, the optimal solution of the original linear 

programming problem is sought in two phases. The first phase is intended to find a basic feasible solution to the 

original linear programming problem. It consists of a sequence of pivot operations that produces a succession of 

different canonical forms from which the optimal solution of the auxiliary problem can be found. This also enables us 

to find a basic feasible solution, if one exists, of the original linear programming problem. The second phase is intended 

to find the optimal solution of the original linear programming problem. It consists of a second sequence of pivot 



operations that enables us to move from one basic feasible solution to the next of the original linear programming 

problem. In this process, the optimal solution of the problem, if one exists, will be identified. 

      The sequence of different canonical forms that is necessary in both the phases of the Simplex method is generated 

according to the Simplex algorithm described in the next section. That is, the simplex algorithm forms the main 

subroutine of the Simplex method. 

6- Simplex Algorithm  

   The starting point of the simplex algorithm is always a set of equations, which includes the objective function along 

with the equality constraints of the problem in canonical form. Thus the objective of the simplex algorithm is to find the 

vector )	 ≥ 	0	that minimizes the function �		)� and satisfies the equations: 
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If the basic solution is also feasible, the values of 
#	, �	 = 	1, 2, . . . , �, are nonnegative and hence: �#" ≥ 0,				�	 = 	1, 2, . . . , �, 
     In phase I of the Simplex method, the basic solution corresponding to the canonical form obtained after the 

introduction of the artificial variables will be feasible for the auxiliary problem. As stated earlier, phase II of the 

Simplex method starts with a basic feasible solution of the original linear programming problem. Hence the initial 

canonical form at the start of the simplex algorithm will always be a basic feasible solution. 

     We know from Theorem 3.6 that the optimal solution of a linear programming problem lies at one of the basic 

feasible solutions. Since the simplex algorithm is intended to move from one basic feasible solution to the other 

through pivotal operations, before moving to the next basic feasible solution, we have to make sure that the present 

basic feasible solution is not the optimal solution. By merely glancing at the numbers �$PP	, �	 = 	1, 2, . . . , �, we can tell 

whether or not the present basic feasible solution is optimal. Theorem 3.7 provides a means of identifying the optimal 

point. 

7- Identifying an Optimal Point (Solution) 

Theorem 3.7: 

A basic feasible solution is an optimal solution with a minimum objective function value of �WPP if all the cost coefficients �$PP		, �	 = 	�	 + 	1,�	 + 	2, . . . , �,	in Eqs. (10) are nonnegative. 

Illustrative Example: Simplex Method to solve LP problem 

Consider the LP optimization problem, which state as follows: 
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� + 2

 + 
� �������	��	�ℎ�	�����������: 
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� ≤ 2					−2
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 − 5
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� ≤ 6					

D 					��b:								
# ≥ 0,			� = 1,2,3 

Solution: 

Step 1: we first change the sign of the objective function to convert it to a minimization problem and the signs of the 

inequalities (where necessary) so as to obtain nonnegative values of the constants �# (to see whether an initial basic 

feasible solution can be readily obtained). 

By doing this, the resulting optimization problem can be stated (formulated) as follows: ��������	9−�	)�; = −
� − 2

 − 
� �������	��	�ℎ�	�����������: 
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D 					��b:								
# ≥ 0,			� = 1,2,3 

To convert the inequality constraints to equality constraints we add respectively the nonnegative slack variables 
U ≥ 0, 
Z ≥ 0, 
[ ≥ 0. Hence, the system of equations can be stated in the canonical form as: 
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Z = 6	4
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 + 
� + 
[ = 6					−
� − 2

 − 
� − � = 0	
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Where 
U, 
Z, 
[		��b − � can be considered as basic variables. 

The set of equations (C�) can be put in a canonical form as follows: 
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[ = 2					2
� − 

 + 5
� + 0
U + 1
Z + 0
[ = 6	4
� + 

 + 
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U + 0
Z + 1
[ = 6					−
� − 2

 − 
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The basic solution corresponding to the basic variables 	
U, 
Z, 
[�	is obtained by letting the nonbasic variables equals 

zero, that is:	
� = 

 = 
� = 0.  
The basic solution is: 
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U = 2					
Z = 6	
[ = 6					� = 0		

D 																																										C
�			 



Since: �# ≥ 0, � = 1,2,3, the obtained basic solution is feasible. 

Question: is this basic feasible solution optimal? 

To answer this question, we apply the theorem 3.7. 

We note that the cost coefficients are not nonnegative (�#PP < 0, � = 1,2,3) (that is:	��PP = −1, �
PP = −2, ��PP = −1  ), 

the present basic feasible solution in not optimal. 

Therefore, we think to improve this solution by first deciding the variable 
G to be brought to the basis. The nonbasic 

variable 
G to be brought to the basis is the one satisfying the following: 

�G" = min		�$" < 0� 
By looking at the nonbasic  variables and their corresponding coefficients, we find: 

�G" = ming�$" < 0h = min	−1,−2,−1� = −2 = �
"  
That is, the nonbasic variable 

 is going to be brought to the basis. This is done by pivotal operation on the pivot 

element to obtain the new canonical form of the system. 

To obtain the new canonical form, we select the pivot element such that: 

�E"�EG" = minijk" lWm�#
"
�#G" n 

In this case: � = 2, ��
" , ��
" > 0, �

" < 0 

Since: ��"��
" = 21 = 2 

��"��
" = 61 = 6 

Hence, the pivot element is: ��
"  

By pivoting on ��
" , the new system of equations can be obtained as: 
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 − 
� + 
U + 0
Z + 0
[ = 2																																																						V� = VW				4
� + 0

 + 4
� + 1
U + 1
Z + 0
[ = 8																																				VV� = VVW + V�								2
� + 0

 + 2
� + 0
U + 0
Z + 1
[ = 4																																										VVV� = VVVW − V�				3
� + 0

 − 3
� + 2
U 																		− � = 4																					VVVV� = VVVVW + 2V�													

D					 

 

Therefore, the basic variables are 	

, 
Z, 
[�  and the nonbasic variables are: 	
�, 
�, 
U�. 
The basic solution is obtained by making the nonbasic variables equal zero, that is: 
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 = 2					
Z = 8	
[ = 4					� = −4		

D 																																										C��			 

 



Is this solution feasible? Yes, it is. 

Is this solution optimum? 

According to Theorem 3.7, we have: ��PP = −3 < 0		��o���p��, hence the obtained solution is not optimum. 

Therefore, we proceed to improve the present solution using pivotal operation. 

• We decide which nonbasic variable to enter the basis, this corresponds to 	
�G" = ming�$" < 0h = min	−3� = −3 = ��"  

• We decide which element is the pivot element, this satisfies: 	�E"�EG" = minijk" lWm�#
"
�#G" n = minq84 , 42r = min		2,2� 

We notice that the two ratios are the same, then we arbitrary select one, say: 
sU,  

Then the pivot element is; ���" . By pivoting on this element, the new canonical form of the system of equations 

will be as follows: 
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� + 54
U + 14
Z + 0
[ = 4																																																															V
 = V� + VV
				
� + 0

 + 1
� + 14
U + 14
Z + 0
[ = 2																																																																						VV
 = 14 VV�	0
� + 0

 + 0
� − 12
U − 12 
Z + 1
[ = 0																																																								VVV
 = VVV� − 2VV
				6
� + 0

 + 0
� + 114 
U + 34
Z 																	− � = 10																					VVVV
 = VVVV� + 3VV
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Corresponding to this canonical form, the basic solution is:  
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 = 4					
� = 2	
[ = 0					� = −10		

D 																																										CZ�			 

In this solution, all �#" ≥ 0, that is it is feasible. 

Is it optimum? 

All �$PP	���	�����o���p�, hence, the obtained solution is optimum with a minimum value of the objective function 

equals (- 10). 

Usually, starting from step (C�) to the final step (CZ), all the computations are done in a tableau form as shown below: 

 

 

 

Basic 

variab

les 

Variables �#" �#"�#G" , �#G" > 0 
� 

 
� 
U 
Z 
[ −� 

tu 2 1  -1 1 0 0 0 2 2← 	wxy	z{|}}y~	��y� 
t� 2 -1 5 0 1 0 0 6 not taken t� 4 1 1 0 0 1 0 6 6 



−� -1 −2 ↑ -1 0 0 0 1 0  

                                         The most negative cost coefficient  �#" = �
"  (indicating that 

 is to enter the next basis) 

Result of pivoting: 

Basic 

variab

les 

Variables �#" �#"�#G" , �#G" > 0 
� 

 
� 
U 
Z 
[ −� 

t� 2 1 -1 1 0 0 0 2 Not taken t� 4 0 4  1 1 0 0 8 2← 	wxy	z{|}}y~	��y� 
t� 2 0 2 -1 0 1 0 4 2 −� 3 0 

 

-3 ↑ 2 0 0 1 4  

                                                        The most negative cost coefficient  �#" = ��"  (indicating that 
� is to enter the next basis). 

The results of pivoting is: 

Basic 

variab

les 

Variables �#" �#"�#G" , �#G" > 0 
� 

 
� 
U 
Z 
[ −� 

t� 3 1 0 5/4 1/4 0 0 4  t� 1 0 1  1/4 1/4 0 0 2  

t� 0 0 0 -3/2 -1/2 1 0 0  −� 6 0 

 

0 

 

11/4 3/4 0 1 10  

All �#" ≥ 0, hence, the present solution is optimum. 

And the minimum value of the objective function is (- 10). 

8- Two Phases of Simplex Method  

The LP optimization problem is stated as to find the nonnegative values for the design (decision) variables: 	
�, 

, 
�, … , 
�� that satisfy the system of constraint equations and minimize the objective function. That is the 

intention is to solve the optimization problem: ��������	�	
�, 

, 
�, … . , 
�� = ��
� + �


 + ��
�, … . , ��
�															11� �������	��	�ℎ�	�����������: 

?@
A
@B ���
� + ��


 + ���
�, … . , ���
� = ��	�
�
� + �



 + �
�
�, … . , �
�
� = �
⋮⋮� �
� + � 


 + � �
�, … . , � �
� = � 

D 																																																	12� 

� ≥ 0 

 ≥ 0 
� ≥ 0 . 



. . 
� ≥ 0 

The general problems encountered when solving this problem are: 

(1) An initial feasible canonical may not be readily be available, which is the case when the LP problem does not 

have slack variables for some of the equations or when the slack variables have negative coefficients. 

(2) The optimization problem may have redundancies and / or inconsistencies, and may not be solvable in 

nonnegative numbers. 

The two-phase simplex method can be used to solve the problem. 

Phase I of the Simplex method uses the Simplex algorithm itself to find whether the LP optimization problem has a 

feasible solution. If a feasible solution exists, it provides a basic feasible solution in canonical form ready to initiate 

phase II of the method. 

Phase II, in turn, uses the Simplex algorithm to find whether the problem has a bounded optimum solution. If this 

bounded optimum exists, it finds the basic feasible solution that is optimum. 

The Simplex method is described in the following steps. 

Step 1: arrange the original form of the Eqs. (12) so that all constant terms �#, � = 1,2,… ,� are positive or zero by 

changing, where necessary, the signs on both sides of any of the equations. 

Step 2: introduce to this system of equations a set of artificial variables (called slack variables) �#, � = 1,2,… ,�, which 

serve as basic variables in phase I, where: �# ≥ 0, so that the system of equations becomes: 

?@
@A
@@
B ���
� + ��


 + ���
�, … . , ���
� + �� = ��	�
�
� + �



 + �
�
�, … . , �
�
� + �
 = �
⋮⋮� �
� + � 


 + � �
�, … . , � �
� + � = � 	�# ≥ 0
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Step 3: arrange the objective function under the form: ��
� + �


 + ��
�, … . , ��
� − � = 0																																								14� 
Step 4: Phase I: 

 

 

 

 

 

Step 5: 

 

 

 

 

 



Step 6: Phase II of the method 

 

 

 

 

 

 

 

 

Example: ��������	� = 2
� + 3

 + 2
� − 
U + 
Z �������	��	�ℎ�	�����������: 3
� − 3

 + 4
� + 2
U − 
Z = 0 
� + 

 + 
� + 3
U + 
Z = 2 
# ≥ 0, � = 1,2,… ,5 

Solution: 

Step 1: since the constants on the right-hand side of the constraint equations are already nonnegative, the application 

of step 1 is unnecessary. 

Step 2: we arrange the objective function to have the form: 2
� + 3

 + 2
� − 
U + 
Z − � = 0 

Step 3: we introduce the artificial variables �# ≥ 0, � = 1,2. 

As a result, the equations formulating the optimization problem become: 

?@A
@B3
� − 3

 + 4
� + 2
U − 
Z + �� 																							= 0		
� + 

 + 
� + 3
U + 
Z +																	�
 														= 2		2
� + 3

 + 2
� − 
U + 
Z 																												− � = 0	

D 
Step 4: we define the infeasibility equation as the sum of the artificial variables as: 

��# 
#�� = � 

In this case, we get: 

��#

#�� = � ⇒ �� + �
 = � 

Consequently, the complete array of equations can be written as: 

?@@
A
@@B
3
� − 3

 + 4
� + 2
U − 
Z + �� 																							= 0		
� + 

 + 
� + 3
U + 
Z 																		+ �
 														= 2		2
� + 3

 + 2
� − 
U + 
Z 																												− � = 0																																																														�� + �
 							− � = 0			

D 																										C
� 

Obviously, this array can be rewritten as a canonical form with basic variables 	��, �
, −�,−�� by subtracting the sum 

of first two equations of 	C
� from the last equation of 	C
�. 



Thus the last equation of 	C
� becomes: −4
� + 2

 − 5
� − 5
U + 0
Z + 0�� + 0	�
 −�	 = −2																		C��	 
We can now reformulate the LP optimization problem by the following system of equations: 

?@@
A
@@B

3
� − 3

 + 4
� + 2
U − 
Z + �� 																							= 0		
� + 

 + 
� + 3
U + 
Z 																		+ �
 														= 2		2
� + 3

 + 2
� − 
U + 
Z 																												− � = 0	−4
� + 2

 − 5
� − 5
U + 0
Z + 0�� + 0	�
 −�	 = −2				
D 																										CU� 

 

Since this canonical system [first three equations of 	C
� and the equation 	C��] provides an initial basic feasible 

solution, phase I of Simplex method can be started. 

Phase I computations are shown below in tableau form: 

Basic 

varia

bles 

Variables �#" �#"�#G" , �#G" > 0 
� 

 
� 
U 
Z �� �
 −� −� 

�� 3 -3 4 2  -1 1 0 0 0 0 0 

�� 1 1 1 3 1 0 1 0 0 2 2/3 

−� 2 3 2 -1 

 

1 0 0 1 0 0  

 −� -4 2 -5 ↑ -5 ↑  0 0 0 0 1 -2  

                                      Most negative coefficients 

Since there is a tie between two most negative coefficients b�"  and bU" , we take arbitrarily bU"  as the most negative b#" for 

choosing which nonbasic variable to enter the basis and which one to drop from the basis. In this case, 
U is being enter 

the basis. 

The result of pivoting is shown in the following tableau. 

Basic 

varia

bles 

Variables �#" �#"�#G" , �#G" > 0 
� 

 
� 
U 
Z �� �
 −� −� 

tu 3/2 -3/2 2 1  -1/2 1/2 0 0 0 0  

�� -

7/2 

112  
-5 0 5/2 -3/2 1 0 0 2 4/11 

−� 7/2 3/2 4 0 

 

1/2 1/2 0 1 0 0  

 −� -

2/3 

-

11/2 ↑ 
5 

 

0 

 

-5/2 5/2 0 0 1 -2  

                         Most negative 

The result of pivoting on �#G" = �

"  is shown in the following tableau. 



Basic 

varia

bles 

Variables �#" �#"�#G" ,	 �#G" > 0 


� 

 
� 
U 
Z �� �
 −� −� 

tu 6/11 0 6/11 1 2/11 1/11 3/11 0 0 0  t� -7/11 1  -10/11 0 5/11 -3/11 2/11 0 0 3/22  

−� 49/11 0 59/11 0 

 

2/11 10/11 -3/11 1 0 -9/44  

 −� 0 0 

 

0 

 

0 

 

0 0 0 0 0 0  

 

Step 5: at this stage, we notice that the present basic feasible solution does not contain any of the artificial variables 

and also the value of � is reduced to zero (� = 0) indicating that phase I is completed. 

Step 6: Phase II: 

Now we start phase II computations by dropping the � row from further consideration. The result of phase II is again 

shown in tableau form as: 

Basic 

varia

bles 

Variables �#" �#"�#G" ,	 �#G" > 0 


� 

 
� 
U 
Z   −�  

tu 6/11 0 6/11 1 2/11   0  0  t� -7/11 1  -10/11 0 5/11   0  3/22  

−� 49/11 0 59/11 0 

 

2/11   1  -9/44  

 

 

At the end, since all the cost coefficients �#" are nonnegative, phase II is completed and the unique optimal solution is 

given by: 
� = 

 = 
� = 0								��������	p��������� 

U = 25,			
Z = 45																		�����	p��������� 
� #� = 25																																																																							 

 

 

 

 

 

 

 

 

 


