
Chapter 1 Introduction to Optimization and Classification 

1- Introduction to Optimization 

1.1 Aim and Scope  

  In this chapter we start by stating the general optimization problem, and discussing how optimization problems can be 

classified by their functional forms, variable types and their structure. 

1.2 Objective function and constraints  

Optimization is the art of finding the best and most efficient solution from a collection of many other alternatives. 

Optimization has numerous applications in science, engineering, finance, medicine and economics. In all these 

applications, we model our decision using a set of independent variables, which may be constrained to lie in some 

region or to satisfy some restricted and conditioned functions. To reach this best and efficient solution, we must first of 

all define and identify an objective. This objective is defined as the quantitative measure of the performance to be 

ensured by the obtained solution. 

Example: we can give as an example of the objectives:  

� Profit. 

� Time. 

� Cost. 

� Potential energy. 

Consequently, the goal behind solving optimization problem is to find and identify values of these independent 

variables (design variables) that maximize (or minimize) a performance measure, which we call the objective (cost) 

function that describes the problem being solved as well as, it gives a quantitative measure on the quality of the 

obtained solution. Formally, we formulate optimization problem of the following general form: 

 

���
��
���
�minimize
 �(
)																																																																								(1. �)		
�������	��:	

���
�
���
�� ≤ �(
) ≤ �� 																																													(1. �)	�� ≤  !
 ≤ ��																																														(1. �)	�
 ≤ 
 ≤ �
 																																																			(1. ")	
 ∈ $																																																															(1. �)

% %		 

 

Here, we are mainly concerned with finite dimensional optimization problems, where:  
 ∈ ℝ'. 
We have two types of functions that describe and fully define a given optimization problem. These are:  

• The objective function: �(
), ∶ �:	ℝ' → ℝ.	 
• The constraint function: �(
); 	�:	ℝ' → ℝ,. 

These two functions are particularly assumed smooth that is, typically twice continuous differentiable over an open set 

containing $. 
• The set $ ⊂ ℝ': imposes further restrictions on the variables. 

•  ∈ ℝ'×/: is a matrix. 

• �� , �� , ��	, ��, �
 , �
: are lower and upper bounds. 

 



1.3 Principle of Optimization   

Optimisation theory is, in general, based on the principle of finding the extreme points (minima or maxima) of functions 

of one or more variables. The simplest and most common application of optimization theory is to find the global 

minimum of a scalar function �(
) of a single variable 
. 

To illustrate this principle, consider the following given single variable function �(
), which is graphically represented 

as:   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1.4 Minimize vs. Maximize  

It is well known that: max
 �(
) ≡ min
 −�(
) 
It turns out that maximization problem can be converted to a minimization one. Therefore, we will be interested only 

with minimization problem. 

2- Preliminary Mathematics for Optimization  

2.1 One-dimensional Function 

One dimensional function is the function defined over single independent variable. It is denoted by �(
) and 

mathematically defined as: �:4 ⊆ ℝ → ℝ 
 ⟼ �(
) 
2.1.1 First and second derivative of one dimensional functions 

If the function of single variable �(
) is continuously twice differentiable, the first and second derivatives are defined 

as: 

���
��"�(
)"
 																																																																	(1)	"7�(
)"
7 																																																																(2)% 

 

2.2 Multidimensional Functions  

A multidimensional function is defined as a function of several (more than one) independent real variables. In general, a 

function of n real variables is denoted by �(x) = �(
:,
7, … , 
') and mathematically defined as: 
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�:4 ⊆ ℝ' → ℝ x ⟼ �(x) 
with: x = A
:			
7 			…			
'BC is the vector of independent variables. 

2.2.1 The Gradient  

If the function is of n real variables, that is:  �(D) = �(
1, 
2, … , 
E) 
Then the column vector formed of the first partial derivatives of the function �(D) is called the gradient of the 

function denoted by ∇
�(D), and defined as: 

∇
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The gradient of the function is a vector that points in the direction of the greatest rate of the function’s 

change. When the gradient of the function is equal to zero, this signifies that no change of the function is 

happened; meaning that the corresponding points are stationary points (candidate minima). We write this as: 


:, 
7, … , 
'	�Q�	����R�E�QS	T�RE��	 ⇔ ∇
�(x) = J�(x)J
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2.2.2 The Hessian of a function 

The Hessian of a function with n real variables denoted by: XY is an E × E matrix consisting of the second order partial 

derivatives with respect to (R, �)�ℎ element as it is expressed below: 

[XY\@,] = J2J
@
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Also defined as: 
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2.2.3 Positive definite and Negative Definite of a Matrix  

A matrix A is positive definite if all of its eigenvalues are positive; that is all the values c that satisfy the determinantal 

equation: 



|e − cf| = 0 

Should be positive (strictly positive: > 0). 

Similarly, the matrix A will be negative definite if all its eigenvalues are negative. 

Other alternative: 

Another test that can be used to find the definiteness of a matrix A of order n involves evaluation of the determinants as 

follows: 

If we have the matrix A defined under the general form as: 

 =
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Its all possible determinants are: 
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 7 = j�:: �:7�7: �77j 
 

 7 = k�:: �:7 �:h�7: �77 �7h�h: �h7 �hhk 
 ⋮ 
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� The matrix A is said to be positive definite if and only if the values of all its determinants ( :,  7,  h, … ,  ') are 

positive. 

� The matrix A is said to be negative definite if and only if the sign of the determinant  ] is (−1)],			��Q	� =1,2,3,… , E. 
� If some of the determinants  ] are positive and the remaining  ] are zero, the matrix is said to be positive 

semidefinite. 

 

3- Convex and Concave Functions  

3.1 Convex Function  

A function �(_) is said to be convex if for any pair of points: 
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And all c, 0 ≤ c ≤ 1, then: �(c_n + (m − c)_m) ≤ c�(_n) + (m − c)�(_m)																																		(1) 
That is, the function is convex if the segment joining the two points _m and _n lies entirely above or on the graph of the 

function �(_). 
The figures 1 and 2 illustrate a convex function in one and two dimensions. 

 

 

 

 

 

 

 

 

 

 

 

Fig.1 functions of one variable: (a) convex function, (b) concave function 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.2 functions of two variables: (a) convex function, (b) concave function 

 

It can be seen that a convex function always bending upward and hence it is apparent that the local minimum of a 

convex function is also a global minimum. 

3.2 Concave function  

A function �(_) is called concave if for any two points _m and _n, and for all c, 0 ≤ c ≤ 1: 
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�(c_n + (m − c)_m) ≥ c�(_n) + (m − c)�(_m)																																		(2) 
That is, the function is concave if the line segment joining the two points lies below or on the graph of the function �(_).  
The fig 1. (b) and fig 2. (b) give and illustrate a concave function in one and two dimensions respectively. 

It is apparent that the concave function, in general, bends downward and hence the local maximum will be always a 

global maximum. 

• It is also obvious that the negative of the convex function is a concave function, and vice versa. 

• We can note also that the sum of convex functions is a convex function. 

• The sum of concave functions is a concave function. 

• The function �(_) is strictly convex or strictly concave if the strict inequality holds in equations (1) and (2) for 

any two different points, _m ≠ _n. 

• A function can be convex in a region and concave elsewhere, as it can be illustrated in the figure below: 

 

 

 

 

 

 

 

 

 

Fig.3 function that is convex over certain region and concave over other region 

 

3.3 Testing for Convexity and Concavity 

In addition to the preceding given definitions for convex and concave function, there are relations that can be used to 

identify whether an objective function is convex or concave. 

3.3.1 Theorem 1:  

A function �(_) is convex if for any two different points _m ≠ _n we have: �(_n) ≥ �(_m) + ∇�v(_m)(_n − _m) 
3.3.2 Theorem 2:  

A function �(_) is convex if its Hessian matrix: 

^(_) = J7J
@J
] �(_) 
Is positive semidefinite. 

Hence we can state the following two rules: 

 

 

 

 


 

�(
) 

Rule 1: 

A function �(_) is convex if the Hessian matrix ^(_) is positive semidefinite. 

Rule 2: 

A function �(_) is concave if the Hessian matrix ^(_) is negative semidefinite. 

 



The following theorem establishes a very important relation, namely, any local minimum is global minimum for a convex 

function 

3.3.3 Theorem 3: 

If a function �(_) is convex (concave), any local minimum (maximum) is global minimum (maximum). 

Example  

Determine whether the following functions are convex or concave. 

(a) �(
) = �
 

(b) �(
) = −8
7 

(c) �(
:, 
7) = 3
:h − 6
77 

(d) �(
:, 
7, 
h) = 4
:7 + 3
77 + 5
h7 + 6
:
7 + 
:
h − 
: − 2
7 + 15 

Solution  

(a) �(
) = �
 

Since the function is of one variable, so it is convex or concave depends on the second derivative. 

We have: "7"
7 �(
) = "7"
7 A�
B = ""
 A�
B = �
 > 0, ∀
 ∈ ℝ 

That is �(
) = �
 is strictly convex function. 

 

(b) �(
) = −8
7 

   Similarly, since the function is of one variable, we calculate the second derivative, instead of the Hessian, to identify it 

(whether convex or concave). 

We have: "7"
7 �(
) = "7"
7 A−8
7B = ""
 A−16
B = −16 < 0, ∀
 ∈ ℝ 

Therefore, the function �(
) = −8
7 is strictly concave. 

(c) �(
:, 
7) = 3
:h − 6
77 

Here we calculate the Hessian matrix of the function: 

We have: 
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^(_) = }18
: 00 −12~ 
Using the method of determinants, we get: 

:̂ = |18
:| = 18
: 

 

^7 = j18
: 00 −12j = −144
: 

Here we have to study the cases: 

We distinguish two cases depending on 
: 



• If 
: < 0, then :̂ < 0,^7 > 0, that is the Hessian is negative semidefinite, and hence the function is strictly 

concave. 

• If 
: > 0, then :̂ > 0,^7 < 0, that is the Hessian is indefinite, and hence the function is neither convex nor 

concave. 

(d) �(
:, 
7, 
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:
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:
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We calculate the Hessian matrix: 
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Using the methods of determinants to determine the nature of the Hessian matrix as follows: 

:̂ = |8| = 8 > 0 

^7 = j8 66 6j = 12 > 0 

^h = k8 6 16 6 01 0 10k = 114 > 0 

Hence all determinants of the Hessian matrix are positive, which indicate that it is positive semidefinite and the function 

is strictly convex. 

4- Classification of Optimization Problems 

In general, an optimization problem at the mathematical level is given and defined by an objective (cost) function: �:4 → ℝ 

And one search for the optimal point: 
∗ ∈ 4 

Such that: �(
∗) ≤ �(
),				��Q	���	
 ∈ 4 

Often, K is a subset of ℝ', that is: 4 ⊂ ℝ' 

Which is defined by constraints. 

Then, the optimization problem is formulated as: min
∈ℝ� �(
),																																						(1. �) 	�. �.	 �](
) ≥ 0							� ∈ �																						(1. �) 	�](
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Where: �: is an index set denoting the inequality constraints, and: �: is an index set denoting the equality constraints of the optimization problem. 

We denote the sizes of � and � respectively as: 



� �� = |�|	�� = |�|% 
And:  �]: ℝ' → ℝ 

Are the constraints of the optimization problem. 

When classifying optimization problems, one can roughly divide them into the following categories: 

4.1 Unconstrained Optimization problems 

In general, unconstrained optimization problem corresponds to the case where: �� = �� = 0 

In other words, unconstrained optimization problems are problems without any additional constraints; that is relations 

(1.b) to (1.c) are not present. Hence, unconstrained optimization problems are simply defined as follows: 

minimize
∈ℝ� �(
) 
The unconstrained optimization problem represents, in fact, a category that encompasses many types of optimization 

problems, where we can define: 

4.1.1 Unconstrained Quadratic optimization problems  

In which, the objective (cost) function � is quadratic, that is, a function defined as: q(Y) = Y�eY − s�Y 

With: e ∈ ℝ'×' is a symmetric square matrix. 

The quadratic optimization problems require the solution of a linear system, where the conjugate Gradient algorithm 

may be conveniently used to solve it. 

4.1.2 Unconstrained General nonlinear optimization problems  

In this optimization problem, the objective function � is neither linear nor quadratic. 

4.2 Constrained Optimization problems 

The constrained optimization problems are those problems in which the constraint functions �](
) is not zero. These 

problems are divided to the following: 

4.2.1 Constrained Optimization Problem with Equality constraints 

This corresponds to the case of �� = 0	in the previously general formulation of the optimization problem. 

4.2.2 Constrained optimization problems with Inequality constraints  

 This corresponds to the case of �� = 0	in the previously general formulation of the optimization problem. 

Furthermore, Constrained Optimization problems are found under the following common groups or types: 

4.2.3 Linear programming optimization problems (LP) 

These are characterized by: 

� Both objective function and constraints are linear. 

� They have the general statement form as: min� �v_																																			 
�. �.				 _ ≤ �																															 �E"					< ≥ 0																															 



4.2.4 Quadratic Programming Optimization Problems (QP) 

These optimization problems are characterized by: 

� The objective function is quadratic and the constraints are linear. 

� They have the following general statement form: min� _��_+ �v_				 
�. �.				 _ ≤ �														 �E"				< ≥ 0														 

4.2.5 Nonlinear Programming Optimization Problems (NLP) 

These are characterized by: 

� The objective function is nonlinear or at least one constraint is nonlinear. 

4.3 Optimal control problems 

These are optimization problems where the variable 
 is function of one or several parameters. 

4.4 Combinatorial optimization problems: 

These are optimization problems where the set � ⊂ ℝ' is discrete or even finite. We will not address the combinatorial 

optimization problems, because the techniques used to solve such problems are substantially different from the 

techniques used for all the other problems. Optimal control problems can be however handled by the techniques 

discussed in this chapter after discretization. 

5- Solution strategy (Method) for a Given Optimization Problem 

The solution strategy or algorithm for a given optimization problem depends on its class; that is, whether it is linear, 

nonlinear or quadratic. Consequently, each problem class requires its own algorithms. 

6- First Optimization Example  

Consider the design of a reinforced concrete beam to support a load (more complex examples, where we consider 

structures such as houses can be readily derived). We are interested in minimizing the cost of the reinforced beam, 

which is the sum of the steel reinforcement, and the concrete. The variables are the area of the re-reinforcement, 
:, 

and the width and depth of the beam, 
7 and 
h. The full problem can be defined as: 
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Where the objective function adds the cost of the reinforcement and the concrete, the nonlinear constraint describes 

the load, the linear constraint describes the desired width to depth ratio, and the simple bounds describe positivity and 

size constraints. In practice, some of the variables such as the size of the reinforcement may be integer, because they 

have to be chosen from a set of prefabricated units. 

 


